Sia dato il seguente sistema in retroazione:

$$r(t) \rightarrow e(t) \rightarrow T(s) \rightarrow d(t) \rightarrow G(s) \rightarrow y(t)$$

a) Posto $$T(s) = K$$, determinare, in funzione del parametro $$a > 0$$, per quali valori di $$K$$ il sistema retroazionato è asintoticamente stabile. Per quali valori del parametro $$a$$ il sistema retroazionato è sempre instabile?

b) Posto $$T(s) = 10$$ e $$a = 1$$, determinare il valore a regime $$y_{\infty}(t)$$ dell’uscita $$y(t)$$ quando sul sistema agiscono contemporaneamente il disturbo $$d(t) = 8$$ e il riferimento $$r(t) = 2 \cos 5t$$.

c) Posto $$T(s) = 10$$ e $$a = 1$$, disegnare qualitativamente il diagramma polar di Nyquist del guadagno di anello $$T(s)G(s)$$. Calcolare esattamente le intersezioni con l’asse reale, i corrispondenti valori della pulsazione $$\omega$$ e dire se, in base al criterio di Nyquist, il sistema retroazionato è stabile.

d) Posto $$T(s) = 10$$ e $$a = 1$$, tracciare qualitativamente i diagrammi asintotici di Bode delle ampiezze e delle fasi del guadagno di anello $$T(s)G(s)$$.

e) Posto $$T(s) = K$$ e $$a = 1$$, tracciare qualitativamente il luogo delle radici del sistema retroazionato al variare del parametro $$K > 0$$. Calcolare esattamente i punti di diramazione del luogo delle radici. Indicare qual è il punto del luogo delle radici a cui corrisponde il minimo tempo di asservimento $$T_a$$ per il sistema retroazionato.

f) Posto $$a = 1$$ e utilizzando il metodo della cancellazione polo-zero, determinare il valore dei parametri $$b, c$$ e $$K$$ della rete correttore

$$T(s) = K \frac{s + b}{s + c}$$

in modo che i poli $$p_{1,2}$$ del sistema retroazionato siano reali coincidenti e posizionati in $$p_{1,2} = -10$$. [Suggerimento: dopo aver operato la cancellazione polo-zero, determinare il valore dei parametri $$c$$ e $$K$$ utilizzando il metodo del luogo delle radici (parametrizzato rispetto a $$b$$) al variare del parametro $$K$$].

g) Si consideri il seguente sistema non lineare retroazionato:

Per quale valore del riferimento $$r$$ il punto di lavoro del sistema retroazionato è in $$(x_0, y_0) = (2, 0)$$. Tracciare qualitativamente l’andamento della funzione descrittiva $$F(x)$$ della funzione $$y = y(x)$$ nell’intorno del punto di lavoro e discutere la presenza o meno di oscillazioni autosostenute. Determinare la pulsazione $$\omega$$ delle eventuali oscillazioni autosostenute presenti nel sistema retroazionato.

h) Utilizzando il metodo della trasformazione bilineare, discretizzare il seguente regolatore:

$$D(s) = \frac{M(s)}{E(s)} = 30 \frac{s + 20}{s + 50}$$

giungendo anche alla determinazione della corrispondente equazione alle differenze. Si utilizzi il periodo di campionamento $$T = 0.2$$.
a) L’equazione caratteristica del sistema retroazionato è

\[
1 + \frac{K(5 - s)}{(s - a)(s + 20)} = 0 \quad \rightarrow \quad s^2 + (20 - a - K)s + 5K - 20a = 0
\]

La corrispondente tabella di Routh è la seguente

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>5K - 20a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 - a - K</td>
<td></td>
<td>K < 20 - a</td>
</tr>
<tr>
<td>0</td>
<td>5K - 20a</td>
<td>\to</td>
<td>K > 4a</td>
</tr>
</tbody>
</table>

Il sistema retroazionato è stabile per i seguenti valori di \(K \)

\[K_1 = 4a < K < 20 - a = K_2 \]

La pulsazione \(\omega^* \) corrispondente al valore \(K_2 \) vale

\[\omega^* = \sqrt{5K_2 - 20a} \]

Il sistema retroazionato è sempre instabile se \(K_1 > K_2 \) cioè se

\[4a > 20 - a \quad \rightarrow \quad a > 4 \]

b) Si ponga \(T(s) = 10 \) e \(a = 1 \). Per il principio di sovrapposizione degli effetti, l’uscita \(Y(s) \) può essere espressa come somma dei contributi derivanti dall’ingresso \(R(s) \) e dal disturbo \(D(s) \):

\[Y(s) = G_d(s)D(s) + G_r(s)R(s) = \frac{G(s)}{1 + T(s)G(s)}D(s) + \frac{T(s)G(s)}{1 + T(s)G(s)}R(s) \]

Sostituendo si ottiene

\[Y(s) = \frac{(5 - s)}{(s - 1)(s + 20) + 10(5 - s)} \frac{D(s)}{G_d(s)} + \frac{10(5 - s)}{(s - 1)(s + 20) + 10(5 - s)} \frac{R(s)}{G_r(s)} \]

cioè

\[Y(s) = \frac{(5 - s)}{s^2 + 9s + 30} \frac{D(s)}{G_d(0)} + \frac{10(5 - s)}{s^2 + 9s + 30} \frac{R(s)}{G_r(j5)} \]

Dall’analisi svolta al punto a) sappiamo che per \(T(s) = 10 \) il sistema è stabile, per cui il valore a regime \(y_\infty(t) \) dell’uscita può essere calcolato semplicemente utilizzando il “concetto” di funzione di risposta armonica:

\[y_\infty(t) = 8G_d(0) + 2|G_r(j5)|\cos(t + \text{Arg}[G_r(j5)]) \]

dove

\[G_d(0) = \frac{1}{6}, \quad G_r(j5) = \frac{10(1 - j)}{(1 + j9)} \]

da cui

\[|G_r(j5)| = \frac{10\sqrt{2}}{\sqrt{82}} = \frac{10}{\sqrt{41}} = 1.562 \]

\[\text{Arg}[G_r(j5)] = -\pi/4 - \arctan 9 \approx -2.245\text{rad} = -128.66^\circ \]

Il valore a regime \(y_\infty(t) \) dell’uscita è quindi il seguente

\[y_\infty(t) \approx \frac{4}{3} + 3.123\cos(5t - 2.245) \]
c) Per $T(s) = 10$ e $a = 1$, il guadagno di anello del sistema è

$$ T(s) G(s) = \frac{10(5 - s)}{(s - 1)(s + 20)} $$

Il corrispondente diagramma di Nyquist per $\omega \in [0, \infty]$ è mostrato in Fig. 1. Per $\omega_1 = 0$ il punto di partenza del diagramma è $\sigma_1 = -0.25$. La somma delle costanti di tempo è positiva

$$ \sum \tau_i = \frac{1}{5} + \frac{1}{a} - \frac{1}{20} \bigg|_{a=1} = \frac{20 - 5a}{20a} \bigg|_{a=1} = \frac{3}{4} $$

per cui per $\omega = 0^+$ il diagramma di Nyquist parte in anticipo. La fase finale a cui tende il diagramma per $\omega \to \infty$ è $-\frac{3}{4} \pi$ per cui, necessariamente, è presente un'altra intersezione con il semiasse negativo. Dall'analisi di stabilità svolta al punto a) si determinano facilmente le intersezioni σ_1 e σ_2 con l'asse reale negativo

$$ \sigma_1 = -\frac{10}{4} = -2.5, \quad \sigma_0 = \frac{-10}{19} = -\frac{1}{19} = -0.526 $$

Tale intersezioni si hanno in corrispondenza delle pulsazioni $\omega_1 = 0$ e $\omega_2 = \sqrt{75} = 8.66$.

d) Per $T(s) = 10$ e $a = 1$, il guadagno di anello $T(s) G(s)$ è il seguente

$$ T(s) G(s) = \frac{10(5 - s)}{(s - 1)(s + 20)} $$

I diagrammi asintotici di Bode delle ampiezze e delle fasi del guadagno di anello $T(s) G(s)$ sono mostrati in Fig. 2. Il modulo del guadagno statico del sistema per $\omega = 0$ è

$$ |T(0) G(0)| = 2.5 = 7.96 \text{ db} $$

e) L'equazione caratteristica del sistema retroazionato è

$$ 1 - \frac{K(s - 5)}{(s - 1)(s + 20)} = 0 \quad \Rightarrow \quad s^2 + (20 - a - K)s + 5K - 20a = 0 $$

L'andamento qualitativo del luogo delle radici al variare del parametro $K > 0$ è mostrato in Fig. 3. La graficazione del luogo delle radici viene fatta per $K_1 < 0$. È presente un solo asintoto coincidente con il semiasse reale positivo. I due punti di diramazione σ_1 e σ_2 si possono calcolare in tre modi diversi:
Figura 2: Diagrammi di Bode delle ampiezze e delle fasi del guadagno di anello $T(s) G(s)$.

Figura 3: Luogo delle radici del guadagno di anello $T(s) G(s)$ al variare del parametro $K > 0$.
1) uguagliando a zero la derivata dell’equazione caratteristica fatta rispetto ad \(s \):

\[
\frac{d}{ds} \left[\frac{(s - 5)}{(s - 1)(s + 20)} \right] = 0 \quad \rightarrow \quad s^2 - 10s - 75 = 0
\]

da cui

\[
\sigma_{1,2} = 5 \pm \sqrt{25 + 75} = 5 \pm 10 \quad \rightarrow \quad \begin{cases}
\sigma_1 = -5 \\
\sigma_2 = 15
\end{cases}
\]

2) sapendo che al di fuori dell’asse reale il luogo delle radici è una circonferenza centrata nello zero il cui raggio è

\[
R = \sqrt{d_1 d_2} = \sqrt{4 \cdot 25} = \sqrt{100} = 10
\]

per cui i punti di diramazione sono posizionati in \(\sigma_{1,2} = 5 \pm R = 5 \pm 10 \).

3) imponendo che il discriminante dell’equazione caratteristica del sistema retroazionato sia nullo

\[
\Delta^2 = (19 - K)^2 - 4(5K - 20) = 0 \quad \rightarrow \quad K^2 - 58K + 19^2 + 80
\]

da cui si ricavano i valori di \(K \) corrispondenti ai due punti di diramazione

\[
K_{1,2} = 29 \pm \sqrt{29^2 - 19^2 - 80} = 29 \pm 20 = \begin{cases}
9 \\
49
\end{cases}
\]

Sostituendo nell’equazione caratteristica si determinano i due punti di diramazione cercati.

Il minimo tempo di assestamento \(T_a \) si ha in corrispondenza del punto di diramazione \(\sigma_2 = -5 \). Il valore di \(K \) ad esso corrispondente è

\[
K = -\frac{1}{G(s)} \bigg|_{s=-5} = \frac{(s - 1)(s + 20)}{(s - 5)} \bigg|_{s=-5} = 9
\]

f) Non essendo possibile cancellare un polo o uno zero instabili, l’unica possibilità di operare una cancellazione polo-zero è quella di posizionare lo zero della rete in corrispondenza del polo stabile del sistema, cioè si deve porre \(b = 20 \). Operata tale scelta, l’equazione caratteristica del sistema retroazionato diventa

\[
1 - \frac{K(s - 5)}{(s - 1)(s + c)} = 0
\]

Il luogo delle radici al variare del parametro \(K > 0 \) è, qualitativamente, simile a quello riportato in Fig. 3. Perché il sistema retroazionato abbia poli coincidenti in \(p_{1,2} = -10 \) occorre portare il punto di diramazione \(\sigma_2 \) in -10. Questo è possibile solo se il raggio \(R \) del luogo delle radici assume il valore \(R = 15 \), cioè se

\[
R = \sqrt{d_1 d_2} = \sqrt{4(5 + c)} = 15 \quad \rightarrow \quad c = \frac{255}{4} - 5 = \frac{205}{4} = 51.25
\]

Il corrispondente valore di \(K \) è

\[
K = \frac{(s - 1)(s + c)}{s - 5} \bigg|_{s=-10} = \frac{121}{4} = 30.25
\]

La rete correttrice cercata è quindi la seguente:

\[
T(s) = 30.25 \frac{s + 20}{s + 51.25}
\]

In presenza della rete correttrice \(T(s) \), l’andamento qualitativo del luogo delle radici al variare del parametro \(K > 0 \) diventa quello mostrato in Fig. 4.

g) Il punto di lavoro del sistema retroazionato è in \((x_0, y_0) = (2, 0) \) se

\[
K_1r = 2 \quad \rightarrow \quad r = \frac{2}{K_1} = 4
\]
Figura 4: Luogo delle radici del guadagno di anello $K T(s) G(s)$ al variare del parametro $K > 0$.

Figura 5: Andamento qualitativo della funzione descrittiva $F(X)$.
dove $K_1 = 0.5$ è il guadagno statico del sistema $G_1(s)$. La pendenza della retta di carico è $K = -0.5$. L’andamento qualitativo della funzione descrittiva $F(X)$ nell’intorno del punto di lavoro $(x_0, y_0) = (2, 0)$ è mostrato in Fig. 5. Per $X < 2$ la $F(x)$ vale

$$F(X) = \frac{12}{\pi X} - \frac{1}{2}$$

Per $X \to \infty$ la funzione descrittiva $F(X) \to 0.25$. La parte lineare del sistema ha un margine di ampiezza $M_A = 16$ come si ricava dalla seguente analisi. L’equazione caratteristica di un sistema che abbia un polo troplo in $-a$ è la seguente

$$1 + \frac{K}{(s + a)^2} = 0 \quad \Rightarrow \quad s^3 + 3a s^2 + 3a^2 s + a^3 + K = 0$$

Utilizzando la tabella di Routh si determina facilmente che il valore massimo K^* e la corrispondente pulsazione ω^* valgono

$$K^* = 8a^3 \quad \omega^* = a\sqrt{3}$$

Nel caso in esame si ha $a = 2$ per cui

$$K^* = 64 \quad \Rightarrow \quad M_A = \frac{K^*}{4} = 16 \quad \omega^* = 2\sqrt{3} = 3.464$$

Il sistema retroazionato è caratterizzato da un solo ciclo limite stabile la cui ampiezza X^* si determina risolvendo l’equazione $F(X) = M_A$:

$$\frac{12}{\pi X^*} - \frac{1}{2} = 16 \quad \Rightarrow \quad X^* = \frac{24}{33\pi} = 0.2315$$

h) Utilizzando il metodo della trasformazione bilineare si ottiene

$$D(z) = D(s)|_{s = \frac{2}{1 + \frac{1}{z^{-1}}} = 30 \frac{2(1 - z^{-1}) + 20T(1 + z^{-1})}{2(1 - z^{-1}) + 50T(1 + z^{-1})}|_{T = 0.2} = 30 \frac{6 + 2z^{-1}}{12 + 8z^{-1}}$$

La corrispondente equazione alle differenze si ricava dalla relazione

$$M(z)(12 + 8z^{-1}) = 30E(z)(6 + 2z^{-1})$$

da cui

$$m(k) = \frac{1}{12}[-8m(k - 1) + 180e(k) + 60e(k - 1)$$

cioè

$$m(k) = \frac{1}{3}[-2m(k - 1) + 45e(k) + 15e(k - 1)$$
Esame scritto di “Controlli Automatici” - Modena - 7 Luglio 1998 - Domande Teoriche

Per ciascuno dei seguenti test segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti da più affermazioni giuste e si considerano superati quando queste vengono contrassegnate tutte.

1. Il metodo della Trasformata Zeta nella risoluzione delle equazioni alle differenze lineari a parametri concentrati

 ☑ può essere utilizzato anche nel caso di equazioni lineari tempo-varianti
 ☑ permette di calcolare la risposta forzata del sistema
 ☑ permette di calcolare la risposta libera del sistema

2. Un sistema del secondo ordine privo di zeri e caratterizzato da una coppia di poli complessi coniugati con coefficiente di smorzamento $\delta = 0.6$ presenta un picco di risonanza M_R:

 ☑ $M_R > 1$
 ☑ $M_R = 1$
 ☑ $M_R < 1$

3. Siano y_m e y_∞, rispettivamente, il valore massimo e il valore a regime della risposta temporale di un sistema lineare stabile in risposta al gradino unitario. La massima sovrarisonanza percentuale $S\%$ è definita come segue:

 ☑ $S\% = 100(y_m - y_\infty)$
 ☑ $S\% = 100 \frac{(y_m - y_\infty)}{y_\infty}$
 ☑ $S\% = 100 \frac{y_m}{y_\infty}$

4. Il luogo dei punti del piano complesso per $M = 2$ è

 ☑ la retta verticale $x = -0.5$
 ☑ una circonferenza posizionata a destra della retta verticale $x = -0.5$
 ☑ una circonferenza posizionata a sinistra della retta verticale $x = -0.5$

5. Il diagramma di Nichols del sistema $G(s) = \frac{1}{\tau(s+1)}$ $(\tau > 0)$ all’aumentare di ω

 ☑ è una curva a modulo crescente e fase crescente
 ☑ è una curva a modulo crescente e fase decrescente
 ☑ è una curva a modulo decrescente e fase crescente
 ☑ è una curva a modulo decrescente e fase decrescente

6. Un sistema $G(s)$ stabile ingresso limitato - uscita limitata

 ☑ può avere poli a parte reale positiva
 ☑ può avere zeri a parte reale positiva
 ☑ è un sistema certamente a fase minima

7. Quando è possibile utilizzarlo, il metodo del contorno delle radici si applica

 ☑ ai soli sistemi con retroazione unitaria
 ☑ ai soli sistemi con retroazione algebrica
 ☑ ai sistemi con retroazione qualunque

8. Due sistemi di tipo 1 (entrambi asintoticamente stabili), aventi la stessa costante di velocità K_v, se vengono posti in retroazione negativa unitaria

 ☑ generano sistemi retroazzionati di tipo 1
 ☑ presentano lo stesso errore a regime per ingresso a gradino
 ☑ presentano lo stesso errore a regime per ingresso a rampa
9. Il luogo delle radici presenta almeno un asintoto verticale \(r = n - m > 0 \) è il grado relativo

- quando \(r = 2 \) e \(K_1 \) è positiva
- quando \(r = 2 \) e \(K_1 \) è negativa
- quando \(r = 4 \) e \(K_1 \) è positiva
- quando \(r = 4 \) e \(K_1 \) è negativa

10. Nella sintesi diretta di reti correttive, le formule di inversione possono essere utilizzate

- nel caso di sintesi di una rete anticipatrice
- nel caso di sintesi di una rete ritardatrice
- nel caso di sintesi di una rete a ritardo e anticipo

11. Il metodo di Ziegler-Nichols per determinare i valori di primo tentativo dei parametri di un regolatore standard PID

- richiede la conoscenza esatta del modello del sistema da controllare
- richiede la conoscenza della risposta impulsiva del sistema da controllare
- richiede la conoscenza della risposta al gradino del sistema da controllare
- è applicabile in modo approssimato anche al controllo di sistemi non lineari

12. Per poter applicare il criterio del Cerchio ad un sistema \(G(s) \) retroazionato su una non linearità \(y = f(x) \)

- il sistema \(G(s) \) deve essere a fase minima
- la non linearità \(y = f(x) \) deve passare per l'origine
- la non linearità \(y = f(x) \) deve essere simmetrica rispetto all'origine

13. Un sistema in retroazione negativa avente \(G(s) \) sul ramo diretto, \(H(s) \) sul ramo di retroazione ed avente un elevato guadagno di anello alle basse pulsazioni risulta poco sensibile

- alle variazioni parametriche di \(H(s) \)
- alle variazioni parametriche di \(G(s) \)
- ai disturbi additivi ad alta frequenza agenti sul sistema

14. Da un punto di vista "frequenziale", nella banda \(\omega \in [0, \frac{\pi}{T}] \) il ricostruttore di ordine zero \(H_0(s) = \frac{1-e^{-sT}}{s} \)

- è un passabasso
- è un passabanda
- ha guadagno statico unitario \(H_0(j0) = 1 \)
- ha guadagno nullo per \(\omega = \frac{\pi}{T} \) : \(H_0(j\frac{\pi}{T}) = 0 \)

15. Il metodo di discretizzazione per "trasformazione bilinear con precompensazione frequenziale" applicato alla funzione \(G(s) \) in corrispondenza della pulsazione \(\omega = \omega_1 \) opera la seguente sostituzione

- \(s = \frac{\omega_1}{\tanh \frac{\omega_1}{2T} \left(1 + \frac{1}{z^{-1}} \right)} \)
- \(s = \frac{\omega_1}{\tanh \frac{\omega_1}{2T} \left(1 - z^{-1} \right)} \)
- \(s = \frac{\omega_1}{\tanh \frac{\omega_1}{2T} \left(1 + z^{-1} \right)} \)
- \(s = \frac{\omega_1}{\tanh \frac{\omega_1}{2T} \left(1 - z^{-1} \right)} \)

16. Sia \(X(z) \) la Z-trasformata della sequenza \(x(kT) \). Il teorema del valore finale afferma che

- \(x(\infty) = \lim_{z \to 0} zX(z) \)
- \(x(\infty) = \lim_{z \to 1} zX(z) \)
- \(x(\infty) = \lim_{z \to 0} (1 - z^{-1})X(z) \)
- \(x(\infty) = \lim_{z \to 1} (1 - z^{-1})X(z) \)