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Stability criteria for nonlinear systems

• First Lyapunov criterion (reduced method): the stability analysis of an

equilibrium point x0 is done studying the stability of the corresponding

linearized system in the vicinity of the equilibrium point.

• Second Lyapunov criterion (direct method): the stability analysis of an

equilibrium point x0 is done using proper scalar functions, called Lyapunov

functions, defined in the state space.

————–

First Lyapunov criterion

• Lyapunov “reduced” criterion. Let us consider the following “continuous

time” [“discrete time”] nonlinear system:

ẋ(t) = f(x(t), u(t)) [ x(k + 1) = f(x(k), u(k)) ]

In the vicinity of the equilibrium point (x0, u0), let us consider the corre-

sponding linearized system:

˙̃x(t) = Ax̃(t) +B ũ(t) [ x̃(k + 1) = Ax̃(k) +B ũ(k) ]

For the two considered systems, the following statements hold:

1) If all the eigenvalues of matrix A have “negative real part” [“modulus

less than 1”], then the equilibrium point (x0, u0) is asymptotically

stable also for the nonlinear system.

2) If at least one of the eigenvalues of the matrix A has “positive real

part” [“modulus greater than 1”], then the equilibrium point (x0, u0)

is unstable also for the nonlinear system.

3) If at least one eigenvalue of the matrix A is located “on the imaginary

axis” [“on the unitary circle”] while all the other eigenvalues have

“negative real part” [“modulus less than 1”], then it is not possible to

conclude anything about the stability of the equilibrium point (x0, u0)

for the nonlinear system. (In this case the criterion is not effective).
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Example. Let us consider the following three “autonomous” nonlinear systems:






ẋ1 = −x31 + x2

ẋ2 = −x31 − x32







ẋ1 = x31 + x2

ẋ2 = −x31 + x32







ẋ1 = x2

ẋ2 = −x31

It can be easily verified that the origin x0 = 0 is an equilibrium point for all the three
systems. The Jacobian matrices of the three systems have the following structure:

A1 =

[
−3x21 1
−3x21 −3x22

]

, A2 =

[
3x21 1
−3x21 3x22

]

, A3 =

[
0 1

−3x21 0

]

Computing the Jacobian matrices in the origin, one obtains the same matrix A of the
corresponding linearized system:

A =

[
0 1
0 0

]

This matrix has two eigenvalues in the origin and therefore the reduced Lyapunov criterion
cannot be used. Let us now consider the Lyapunov function V (x) = x41+2x22. Computing
the derivatives along the trajectories of the nonlinear systems, one obtains:

V̇ = −4x61 − 4x42 < 0, V̇ = 4x61 + 4x42 > 0, V̇ = 0

and applying the “direct” Lyapunov criterion it is possible to prove that in x0 = 0 the first
system is asymptotically stable, the second is unstable, and the third is “simply stable”
(see file “exe pro.m”):
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Positive definite functions

• The “direct” Lyapunov criterion refers to particular “positive definite” or

“positive semidefinite” scalar functions, which often have the meaning of

“energy functions”.

• Definition. A continuous function V (x) is “positive definite” (p.d.) [“po-

sitive semidefinite” (p.s.d.)] in the neighborhood of the point x0, if an

open set W ⊆ Rn of point x0 exists such that:

1) V (x0) = 0;

2) V (x) > 0 [V (x) ≥ 0] x ∈ W − x0.

• Examples of “positive definite functions” in point x0 = (0, 0):

1) V (x, y) = x2 + y2

−3
−2

−1
0

1
2

3

−4

−2

0

2

4
0

5

10

15

20

xy

V(x,y)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

V(x,y)

2) V (x, y) =
x2 + y2

(1 + y2)
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3) V (x, y) = x2+y2−x5
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Quadratic forms

• Definition. The continuous function V (x) is a quadratic form if it can be

expressed in the following way:

V (x) = xT Px

where P ∈ Rn×n is a symmetric matrix.

• If the matrix P is [semi]positive definite, then also the corresponding

quadratic form is positive [semi]definite.

• A symmetric matrix P is positive definite if and only if all its principal

minors are positive, that is if the following determinants are positive:

p1,1 > 0,

∣
∣
∣
∣

p1,1 p1,2
p2,1 p2,2

∣
∣
∣
∣
> 0 · · · ,

∣
∣
∣
∣
∣
∣

p1,1 · · · p1,n
... ...

pn,1 · · · pn,n

∣
∣
∣
∣
∣
∣

> 0

• Let λi be the eigenvalues of matrix Ps. The quadratic form:

V (x) = xTPx = xTPsx

is positive definite if and only if all the eigenvalues λi are positive. The

quadratic form is positive semidefinite if and only if all the eigenvalues λi

are positive or zero:

V (x) > 0 ⇔ λi > 0 V (x) ≥ 0 ⇔ λi ≥ 0

• Quadratic forms V (x) always refer to symmetric matrices P because:

1) a generic matrix P can always be expressed as the sum of a symmetric

matrix Ps and a skew-symmetric matrix Pw:

P =
P +PT

2
+

P−PT

2
= Ps +Pw

2) only the symmetric part Ps has influence on the quadratic V (x):

V (x) = xTPx = xTPsx + xTPwx︸ ︷︷ ︸
0

= xTPsx

The skew-symmetric matrices Pw satisfies the following property: the

vector Pwx is always perpendicular to vector x.
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The time derivative of function V (x)

• Let us consider the following continuous-time “autonomous” nonlinear

system:

ẋ(t) = f(x(t), u0) → ẋ(t) = f(x(t))

and let W be a neighborhood of the equilibrium point x0 corresponding to

the constant input u(t) = u0. Let V (x) be a continuous scalar function

with continuous first derivatives defined in the neighborhood W :

V (x) : W → R
• The gradient of function V (x) is a vector defined as follows:

∂V

∂x

△
=

[
∂V

∂x1
, . . . ,

∂V

∂xn

]

= grad (V )

This vector has the geometric meaning of “direction in Rn along which

the function V (x) increases with the highest slope”.

• If x(t) is a solution of the nonlinear system ẋ(t) = f(x(t)), then the

time-derivative V̇ (x) of function V (x) can be expressed as follows:

V̇ (x) =
∂V

∂x
ẋ(t) =

∂V

∂x
f(x(t)) =

∂V

∂x1
f̄1(x) + · · · + ∂V

∂xn
f̄n(x)

The function V̇ (x) is the scalar product of the two vectors ∂V
∂x

and ẋ, and

therefore it can be interpreted in a geometric way:

-

�

ẋ

∂V
∂x

V̇ (x) > 0

-

ẋ

∂V
∂x

V̇ (x) < 0

I

• Note: the computation of V̇ (x) does not require the knowledge of the

trajectory x(t), that is it does not require the explicit solution x(t) of the

nonlinear differential equations of the system.
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Second Lyapunov criterion

• “Direct” Lyapunov criterion. Let us consider the following continuous-
time nonlinear system:

ẋ(t) = f(x(t), u0) → ẋ(t) = f(x(t))

and let x0 be an equilibrium point corresponding to the constant input u0.

1) If in a neighborhood W of x0 exists a function V (x) : W → R
positive definite with continuous first derivatives and if V̇ (x) is negative

semidefinite, then the point x0 is stable for the nonlinear system.

2) If V̇ (x) is negative definite, then the point x0 is asymptotically stable.

• The stability of point x0 is guaranteed only if both the conditions V (x) > 0

and V̇ (x) < 0 are satisfied:
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• La Salle-Krasowskii stability criterion. Let us consider the follo-

wing continuous-time nonlinear system:

ẋ(t) = f(x(t), u0) → ẋ(t) = f(x(t))

and let x0 be an equilibrium point corresponding to the constant input u0.

If:

1) in a neighborhood W of x0 it exists a function V (x) : W → R
positive definite with continuous first derivatives;

2) V̇ (x) is negative semidefinite;

3) the setN = {x ∈ W |V̇ = 0} does not contain perturbed trajectories;
then x0 is an equilibrium point asymptotically stable for the given nonlinear

system.

• The La Salle-Krasowskii stability criterion is a “refinement” of the direct

Lyapunov criterion. Often, it allows to prove the asymptotic stability of

an equilibrium point x0 also when the Lyapunov criterion guarantees only

the simple stability.

————–

Example. Let us consider the electric circuit shown below where N is a nonlinear
element with a current-voltage characteristics IN = g(v), such that function g(v) satisfies
the relation: vg(v) > 0. Let us consider the state vector: x = [I, v]T . The system is
described by the following differential equations:







İ =
v

L

v̇ = −g(v)

C
− I

C

v

IN = g(v)

v

IN IC I

N L

C

The origin is an equilibrium point for the system. The stability of the equilibrium point can
be studied using the following positive definite function V (x):

V (x) =
1

2
LI2 +

1

2
Cv2
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which represents the energy stored in the capacitor and the inductance of the electrical
circuit. Since the function:

V̇ (x) = LI
v

L︸︷︷︸

İ

+Cv

(

−g(v)

C
− I

C

)

︸ ︷︷ ︸

v̇

= −v g(v) ≤ 0

is negative semidefinite, the equilibrium point x = 0 is surely stable. To prove the asymp-
totic stability of the equilibrium point x = 0 one can try to use the La Salle-Krasowskii
criterion. The set N of the points where function V̇ (x) is zero is the following:

N =

[
I

0

]

, I ∈ R

A system trajectory is completely contained within N if and only if v(t) = 0. Using this
condition in the second differential equation of the system, one obtains:

0 = − I

C
→ I = 0

The only trajectory contained within N which satisfies the differential equations of the
system is x = 0. Therefore N does not contain perturbed trajectories of the considered
nonlinear system. Applying the La Salle-Krasowskii criterion, one can conclude that the
origin is asymptotically stable.

————–

The same result could also be obtained using the reduced Lyapunov criterion. In this case
the system Jacobian is the following:

A(I, v) =

[
0 1

L

− 1
C

− 1
C

∂g(v)
∂v

]

→ A =

[
0 1

L

− 1
C

− α
C

]

where α = ∂g(v)
∂v

∣
∣
∣
v=0

> 0 denotes the slope of function g(v) in the point v = 0. The

characteristic polynomial of matrix A is the following:

det(sI−A) = s
(

s+
α

C

)

+
1

LC
= s2 +

α

C
s+

1

LC

Since α > 0, C > 0 and L > 0, the eigenvalues of matrix A have surely a negative real

part and therefore the point x = 0 is an asymptotically stable equilibrium point for the

considered nonlinear system.
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• Instability Lyapunov criterion. Let us consider the following continuous-
time nonlinear system:

ẋ(t) = f(x(t), u0) → ẋ(t) = f(x(t))

and let x0 be an equilibrium point corresponding to the constant input u0.

If:

1) in a neighborhood W of x0 it exists a continuous function V (x) :

W → R with continuous first derivatives such that V (x0) = 0;

2) the point x0 is an accumulation point for the set of the point x ∈ W

for which it is V (x) > 0;

3) V̇ (x) is positive definite in W ;

then x0 is an unstable equilibrium point.

• Note: this criterion can be used also if function V (x) is NOT positive

definite in W .

————–

Example. For the following system
{

ẋ1 = x1 − x1x2
ẋ2 = −x2 + x1x2

x = 0 is equilibrium point. Let us consider the following function

V (x) = x21 − x22 = (x1 + x2)(x1 − x2)

which is positive within the region

W+ = {(x1, x2) | x1 > x2, x1 > −x2}

The origin is clearly an accumulation point for the set W+. The function

V̇ (x) = 2x1ẋ1 − 2x2ẋ2 = 2x21(1− x2) + 2x22(1− x1) > 0

is positive definite in W+. Applying the instability Lyapunov criterion that the equilibrium

point x = 0 is unstable.
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Stability of the discrete nonlinear systems

• Let us consider the following discrete-time nonlinear system:

x(k + 1) = f(x(k), u0) → x(k + 1) = f(x(k))

and let x0 be an equilibrium point corresponding to the constant input u0.

• To apply the “direct” Lyapunov criterion to a “discrete” nonlinear system

one has to refer to a continuous function V (x) : W → R defined in a

neighborhood W of the point x0, but in this case it is not possible to

compute the function V̇ (x) along the system trajectories because in this

case the trajectories x(k) are discrete.

• In this case the following discrete function must be used:

∆V (x(k)) = V (x(k + 1))− V (x(k)) = V (f(x(k)))− V (x(k))

which represents the one step increment of the function V (x) computed

along the trajectories x(k) of the system.

————–

Example. Let us consider the following discrete nonlinear system which has x0 = 0
as equilibrium point, and let V (x) be a proper positive definite function defined in a
neighborhood of the origin:







x1(k + 1) =
x2(k)

1 + x22(k)

x2(k + 1) =
x1(k)

1 + x22(k)

{
V (x) = x21 + x22

∆V (x) = V (x(k + 1))− V (x(k))

The function ∆V (x) can be computed as follows:

∆V (x) =

(
x2

(1 + x22)

)2

+

(
x1

(1 + x22)

)2

− x21 − x22 =
−(2 + x22)x

2
2

(1 + x22)
2

(x21 + x22) ≤ 0

The function ∆V (x) is negative semidefinite, and therefore the system is stable. The set

N of all the point where ∆V (x) = 0 is N =

[
x1
0

]

. Substituting x2 = 0 within the

second difference equation one obtains x1 = 0, that is x = 0 is the only trajectory of the

system contained within the set N . Using the La Salle-Krasowskii criterion it is possible

to state that the equilibrium point x = 0 is asymptotically stable for the given nonlinear

system.
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Stability and instabili criteria for the discrete systems

• Let us consider the following discrete-time nonlinear system:

x(k + 1) = f(x(k), u0) → x(k + 1) = f(x(k))

an let x0 be an equilibrium point corresponding to the constant input u0.

For a nonlinear discrete system the following three criteria hold.

• Property. [“Direct” Lyapunov criterion] If in a neighborhoodW of point x0

it exists a continuous positive definite function V (x) : W → R and if the

function ∆V (x) is negative semidefinite, then the point x0 is stable. If the

function ∆V (x) is negative definite, then the point x0 is asymptotically

stable.

• Property. [La Salle-Krasowskii stability criterion.] If in a neighborhood W

of the point x0 it exists a continuous positive definite function V (x) :

W → R, if the function ∆V (x) is negative semidefinite and if the set

N = {x ∈ W |∆V (x) = 0} does not contain perturbed trajectories of

the given system, then x0 is an equilibrium point asymptotically stable.

• Property. [Instability Lyapunov criterion.] If in a neighborhood W of the

point x0 it exists a continuous function V (x) : W → R which is zero in

x0, if x0 is an accumulation point for the set of all the points x for which

V (x) > 0, and if ∆V (x) is positive definite in W , then x0 is an unstable

equilibrium point for the given nonlinear system.
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Example. Let us consider the following autonomous system

ẋ =

[
0 −1
1 0

]

x x =

[
x1
x2

]

x0 =

[
1
0

]

The free evolution starting from the initial condition x0 is the following

x(t) = eAtx0 =

[
cos t − sin t
sin t cos t

] [
1
0

]

=

[
cos t
sin t

]

x1

x2

The trajectory in the state space is a circle with radius r = 1.
A linear system can have periodic free evolutions and these trajectories are always stable.
The linear system cannot have periodic closed trajectories which are asymptotically stable.
This situation can happen only for nonlinear systems.

Let us consider, for example, the following non linear system:
{

ẋ1 = −x2 + x1(1− r2)
ẋ2 = x1 + x2(1− r2)

dove r2 = x21 + x22

One can easily verify by substitution that r = 1 is a periodic solution (a “limit cycle”) of
the give nonlinear system. The “stability” o “instability” of the limit cycle r = 1 can be
determined using a state space transformation. Using the polar coordinates

{
x1 = r cos θ
x2 = r sin θ

the given system transforms as follows
{

ṙ cos θ − rθ̇ sin θ = −r sin θ + r cos θ(1− r2)

ṙ sin θ + rθ̇ cos θ = r cos θ + r sin θ(1− r2)

Combining the two equations one obtains the following equivalent dynamic system with
separated variables:

{
ṙ = r(1− r2)

θ̇ = 1
→

{

r(t) = etr0√
1+(e2t−1)r2

0

θ(t) = t+ θ0

The qualitative behavior of the system trajectories in the plane (x1, x2) is the following
(see files: “ciclo limite.m” and “ciclo limite ode.m”):
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So, the limit cycle r = 1 is asymptotically stable, that is all the system trajectories (except
the trajectory r = 0) asymptotically tend to the limit cycle r = 1, regardless of the initial
condition. An alternative way to prove that the limit cycle r = 1 is asymptotically stable
is to consider the following function V (r) which is positive definite in the vicinity of point
r = 1:

V (r) =
1

2
(1− r)2

Its time derivative is a function which is negative definite in the vicinity of the point r = 1:

V̇ (r) = −(1− r)ṙ = −r(1− r)2(1 + r) < 0

So it follows that the limit cycle r = 1 is asymptotically stable.

————–

Example. Let us consider the following continuous-time nonlinear system:
{

ẋ1 = β(2− x1) + x21x2

ẋ2 = x1 − x21x2

1.a) Compute, for variable β > 0, the equilibrium points of the system;

1.b) Study, for variable β > 0, the stability of the equilibrium points.

Solution. 1.a) The equilibrium points can be determined solving the following system:
{

0 = β(2− x1) + x21x2

0 = x1 − x21x2 = x1(1− x1x2)

The second equation is solved by

x1 = 0 and for x1x2 = 1
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The solution x1 = 0 does not satisfy the first equation. Substituting x1x2 = 1 in the first
equation one obtains:

2β − βx1 + x1 = 0 → x1 =
2β

β − 1

For β 6= 1, the only equilibrium point of the system is:

x̄1 =
2β

β − 1
x̄2 =

β − 1

2β

1.b) Linearizing in the vicinity of this point one obtains:

ẋ(t) =

[ −β + 2x1x2 x21

1− 2x1x2 −x21

]

(x̄1, x̄2)

x(t) =








2− β
4β2

(β − 1)2

−1
−4β2

(β − 1)2







x(t)

The characteristic polynomial of the system is:

∆(s) = s2 +

[

β − 2 +
4β2

(β − 1)2

]

s+
4β2

(β − 1)
= 0

from which one obtains

∆(s) = s2 +
β3 + 5β − 2

(β − 1)2
s+

4β2

(β − 1)
= 0

The equilibrium point is stable if the coefficients of this polynomial are both positive. This
happens for β > 1. For β < 1, at least one eigenvalue of the system is unstable and
therefore the equilibrium point is unstable. The system trajectories for β = 2, β = 3,
β = 4 and β = 5 are shown in the following figures:
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Trajectories in the vicinity of the equilibrium point: beta=3
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Trajectories in the vicinity of the equilibrium point: beta=5

These simulations have been obtained in the Matlab environment using the following
command file “exe x1x2.m”:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function exe_x1x2

% Nonlinear system:

% x1d=beta*(2-x1)+x1^2*x2

% x2d=x1-x1^2*x2

%%%%%%%%%%%%%%%%

MainString = mfilename; Stampa=0;

global beta

ii=0;

for beta=(2:5); % Changing beta changes the equilibrium point

x10=2*beta/(beta-1); % Equilibrium point

x20=(beta-1)/(2*beta);

ii=ii+1;

figure(ii); clf

V=[[-1.5 1.5]+x10 [-1.5 1.5]+x20]; % Plot window

In_Con=inicond(V,[5,5]); % Initial conditions

Tspan=(0:0.005:1)*2; % Simulation final time

fr=10; dx=0.06; dy=dx; % Arrow position and arrow width

for jj=(1:size(In_Con,1))

[t,x]=ode23(@exe_x1x2_ode,Tspan,In_Con(jj,:)); % ODE simulation

plot(x(:,1),x(:,2)); hold on % Plot

freccia(x(fr,1),x(fr,2),x(fr+1,1),x(fr+1,2),dx,dy) % Draw the arrows

end

grid on; axis(V) % Grid and axis

xlabel(’Variable x_1(t)’) % Label along axis x

ylabel(’Variable x_2(t)’) % Label along axis y

title([’Trajectories in the vicinity of the equilibrium point: beta=’ num2str(beta)])

if Stampa; eval([’print -depsc ’ MainString ’_’ num2str(gcf) ’.eps’]); end

end

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dx=exe_x1x2_ode(t,x);

global beta

dx(1,1)=beta*(2-x(1))+x(1)^2*x(2);

dx(2,1)=x(1)-x(1)^2*x(2);

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Example. Let us consider the following continuous-time nonlinear system:
{

ẋ1 = x1 − x1x2
ẋ2 = x1x2 − x2

1.a) Compute the equilibrium points of the system and study the stability of these point
using the reduced Lyapunov criterion;

1.b) If necessary, to complete the stability analysis of point 1.a, use the following function:
V (x1, x2) = x1 + x2 − ln x1 − ln x2 − 2.

————–

Solution. 1.a) The equilibrium points can be determined imposing ẋ1 = 0 and ẋ2 = 0
{

0 = x1 − x1x2
0 = x1x2 − x2

→
{

x1(1− x2) = 0
x2(x1 − 1) = 0

The two possible equilibrium points are

(x1, x2) = (0, 0), (x1, x2) = (1, 1)

The Jaconian of the system in the point (0, 0) is

J0 =

[
1− x2 −x1
x2 x1 − 1

]

(x1, x2)=(0, 0)

=

[
1 0
0 −1

]

Since the Jacobian J0 has an unstable eigenvalue λ = 1, the equilibrium point (x1, x2) =
(0, 0) is surely unstable. The value of the system Jacobian in point (1, 1) is

J1 =

[
1− x2 −x1
x2 x1 − 1

]

(x1, x2)=(1, 1)

=

[
0 −1
1 0

]

Since the Jacobian J1 is characterized by two imaginary eigenvalues, the reduced Lyapunov
criterion cannot be used to study the stability of the equilibrium point (x1, x2) = (1, 1).

1.b) To complete the stability analysis of the equilibrium point (1, 1) let us use the given
function

V (x1, x2) = x1 + x2 − ln x1 − ln x2 − 2

In the vicinity of the point (1, 1), this function is positive definite. In fact

ln x = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ . . .

Its time derivative is

V̇ (x1, x2) = gradV ẋ =

(

1− 1

x1

)

ẋ1 +

(

1− 1

x2

)

ẋ2
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from which, by substitution, one obtains

V̇ (x1, x2) = x1 − x1x2 + x1x2 − x2 − (1− x2)− (x1 − 1) = 0

It follows that (1, 1) is an equilibrium point simply stable: the trajectories move along the
level curves of the function V (x1, x2). The system trajectories in the plane (x1, x2) are
the following (see file “exe lnx.m”):
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Trajectories in the vicinity of the equilibrium point

————–

Example. Let us consider the following nonlinear differential equation:

ÿ(t) = cos y(t)− 3

2π
y(t)− βẏ(t)

1.a) Write the state space equations of the considered dynamic system and find the
equilibrium point of the system;

1.b) Compute the values of parameter β for which the nonlinear system is asymptotically
stable in the vicinity of the equilibrium point;

Solution. 1.a) Setting x1 = y and x2 = ẏ, the state space equations of the given nonlinear
system are the following:

{
ẋ1 = x2
ẋ2 = cos x1 − 3

2π x1 − βx2

The equilibrium points can be determined imposing ẋ1 = 0 and ẋ2 = 0:

x2 = 0, cos x1 =
3

2π
x1
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From these relations one obtains the following equilibrium point:

x1 =
π

3
, x2 = 0.

1.b) Linearizing in the vicinity of the equilibrium point one obtains:

J =

[
0 1

− sin x1− 3
2π −β

]

x1=
π

3

=

[
0 1

−
√
3
2 − 3

2π −β

]

The characteristic polynomial of this matrix is:

s2 + β s+

√
3

2
+

3

2π
= 0.

The system is asymptotically stable in the vicinity of the equilibrium point if β > 0, while
it is unstable if β < 0. For β = 0 the reduced Lyapunov criterion cannot be used because
the matrix J has two complex eigenvalues with zero real part. The system trajectories
for β = −0.5, β = 0, β = 2 and β = 4 are shown in the following figures (see file
“exe cosx.m”):
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Example. Let us consider the following discrete nonlinear system:
{

x1(k + 1) = αx1(k)− x31(k)

x2(k + 1) = −x32(k)− x31(k)

1.a) Study the stability of the equilibrium point x = 0, for variable α, using the reduced
Lyapunov criterion;

1.b) Study the stability of the equilibrium point x = 0 using the function V (x1, x2) =
x21 + x22.

Solution. 1.a) Linearizing in the vicinity of the equilibrium point x = 0 one obtains:

J =

[
α− 3x21 0
−3x21 −3x22

]

(0,0)

=

[
α 0
0 0

]

The characteristic polynomial of matrix J is:

z(z − α) = 0 → z1 = 0, z2 = α.

The system is asymptotically stable in x = 0 if |α| < 1, while it is unstable if |α| > 1. For
|α| = 1 the reduced Lyapunov criterion cannot be used because one of the two eigenvalues
of matrix J is located on the unitary circle.

1.b) The function:
V (x1, x2) = x21 + x22

is positive definite in a neighborhood of x = 0 and therefore V (x1, x2) is a possible
Lyapunov function. The computation of ∆V (x1, x2) when α = 1 is the following:

∆V (x) = V (x(k + 1))− V (x(k))
= x21(1− x21)

2 + (−x32 − x31)
2 − x21 − x22

= x21 − 2x41 + x61 + x62 + 2x31x
3
2 + x61 − x21 − x22

= −x41[2− 2x21]− x22[1− x42 − 2x2x
3
1] < 0

The obtained function is negative definite in the vicinity of x = 0 and therefore, when
α = 1, the given nonlinear system is asymptotically stable in x = 0.
When α = −1, the given function cannot be used to study the stability of the point x = 0.
In this case the first equation of the system becomes

x1(k + 1) = −x1(k)− x31(k)

This equation does not depend on the variable x2. Let us now consider the function
V (x1) = x21 and compute ∆V (x1):

∆V (x1) = (−x1 − x31)
2 − x21

= x21 + 2x41 + x61 − x21 = 2x41 + x61 > 0

Function ∆V (x1) is positive definite in x = 0 and therefore, for the instability Lyapunov

criterion, one can conclude that for α = −1 the nonlinear system is unstable in x = 0.
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Example. Given the following discrete nonlinear system:

y(k + 1) = −(r − 2)y(k)− r y2(k)

1.a) Find, for r > 0, the equilibrium points of the system and study their stability using
the reduced Lyapunov criterion.

1.b) For r = 3, prove that the equilibrium point x = 0 is asymptotically stable using the
Lyapunov function V (y) = y2+αy3 and properly choosing the value of parameter α.
For r = 1, prove that x = 0 is unstable using the function V (y) = −y.

Solution. 1.a) The equilibrium point of the system can be obtained imposing y(k + 1) =
y(k):

y(k) = −y(k)[r − 2 + r y(k)].

The equilibrium points of the system are:

y1 = 0, y2 =
1− r

r
.

The linearized system in the vicinity of the point y1 = 0 is:

y(k + 1) = −[r − 2 + 2ry(k)](y=0) y(k) = (2− r)y(k)

The equilibrium point y1 = 0 is stable for |2 − r| < 1, that is for 1 < r < 3, and it is
unstable for r > 3 and r < 1. The linearized system in the vicinity of the point y2 =

1−r
r

is:
y(k + 1) = −[r − 2 + 2ry(k)](y= 1−r

r
) y(k) = r y(k)

The equilibrium point y1 =
1−r
r

is stable for 0 < r < 1, while it is unstable for r > 1.

1.b) When r = 3 the system becomes:

y(k + 1) = −y(k)− 3 y2(k).

The stability of the equilibrium point x = 0 is now studied using the function V (y) =
y2 + αy3. This functions is positive definite in x = 0 for any value of parameter α. The
function ∆V (y) is

∆V (y) = V (y(k + 1))− V (y(k))

= (−y − 3 y2)2 + α(−y − 3 y2)3 − y2 − αy3

= y2 + 6y3 + 9y4 − α(y3 + 9y4 + 27y5 + 27y6)− y2 − αy3

= (6− 2α)y3 + (9− 9α)y4 − 27αy5 − 27αy6

If α = 3 the function ∆V (y) is negative definite:

∆V (y) = −18y4 − 81y5 − 81y6.
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So the point x = 0 is asymptotically stable for r = 3.

For r = 1 the two equilibrium points coincides: y1 = y2 = 0. In this case the difference
equation of the system is:

y(k + 1) = y(k)− y2(k).

For studying the stability of the pointy y = 0 the following function can be used

V (y) = −y → ∆V (y) = −(y − y2)− (−y) = y2 > 0.

Since x = 0 is an accumulation point for the set of all the point for which V (y) > 0, and
being ∆V (y) positive definite, using the instability Lyapunov criterion one can conclude
that x = 0 is unstable.

So, the stability of the two equilibrium points for variable r > 0 is:

y1 = 0 :

{
1 < r ≤ 3 as. stable

r ≤ 1 e r > 3 unstable

y2 =
1− r

r
:

{
1 < r as. stable
r ≥ 1 unstable
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