Capitolo 0. INTRODUCTION 3.1

The Power-Oriented Graphs Modeling Technique

e Complex physical systems can always be decomposed in basic physical
elements which interact with each other by means of “energetic ports”,
and “power flows".

e Examples of elementary physical systems:
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Capitolo 3. DYNAMIC MODELING 3.2

e The Power-Oriented Graphs (POG):

— is a graphical modeling techniques that uses an “energetic approach”
for modeling physical systems.

— use the “power’ and “energy’ variables as basic concepts for modeling
physical systems.

— the POG block schemes are easy to use, easy to understand and can
be directly implemented in Simulink.

— is based on the same energetic concept of the Bond Graph modeling
technique. See: Karnopp, Margolis, Rosemberg, “System Dynamics -
A unified approach”, John Wiley & Sons.

e FExample. A DC electric motor moves an hydraulic pump. The physical
system and the corresponding POG block scheme:
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Capitolo 3. DYNAMIC MODELING 3.3

e The “energetic approach’ is useful for modeling because the physical
systems are always characterized by the following properties:
1) a physical system “stores and/or dissipates energy";

2) the dynamic model of a physical system describes “how the energy
moves’ within the system,

3) the energy moves from point to point within the system only by means

of two “power variables’ .

e Power sections. The “dashed lines” of the POG schemes represent
the “power sections” of the system. The inner product (x,y) = x’y of

the two “power variables” x and y touched by the dashed line has the
physical meaning of “power flowing through the section”.

e POG blocks. The POG technique uses two blocks for modeling phy-
sical systems: the Flaboration block and the Connection block.

Power sections
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Capitolo 3. DYNAMIC MODELING 3.4

e The Elaboration block is used for modeling the physical elements that

store and/or dissipate energy (i.e. springs, masses, dampers, capacities,
inductances, resistances, etc.).
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e Equivalent ways of representing the elaboration block:
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e The black spot within the summation element represents, when it is
present, a minus sign that multiplies the entering variable.

e Rules for inverting a path:

1) Invert each line of the path; X1 '—’T‘—'ej X2 X1 "—T‘_‘
2) Invert each block of the path; T | 1
_ _ |G| = e is)|

3) In the summation blocks in- L | | |
vert the sign of the variables ) | T
Yée—3—Yy Y o—t—re

which belong to the path;
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Capitolo 3. DYNAMIC MODELING

3.5

e Example of path inversion:

a) Path to be inverted b) Inverted path c) Equivalent

scheme
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The POG block scheme does not change is the signs of a summation block

are all switched to the opposite value.

e The Connection block is used for modeling the physical elements that
“transform the power without losses” (i.e. neutral elements such as gear

reductions, transformers, etc.).
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e Equivalent ways of representing the connection block:
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+ upside down
e Matrix K can also be rectangular or time varying.
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Capitolo 3. DYNAMIC MODELING

3.6

e The main Energetic domains encountered in modeling physical sy-

stems are: electrical, mechanical (translational and rotational) and hydrau-

lic. Each energetic domain is characterized by two power variables.

POG variables | Electrical | Mech. Tras. | Mech. Rot. | Hydraulic
Across-var.: v, |V Voltage |z Velocity w Angular vel. | P Pressure
Through-var.: v | I Current | F' Force 7 Torque () Volume flow rate

e In each dashed line of the POG schemes the product P = v.vs of two

power variables v. and vy has the physical meaning of power PP flowing

through that particular power section.
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e The connection blocks convert the power
without generating nor dissipating energy. X1

e The input power flow x7y; is always equal to
the output power flow x2yo:
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Capitolo 3. DYNAMIC MODELING 3.7

e The power variables can be divided in two groups:

1) the “across-variables” (voltage V', velocity X, angular velocity w
and pressure P) which are defined “between two points of the space:
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2) “through-variables” (current I, force I, torque 7 and volume flow
rate () which are defined ‘“in each point” of the space:

e— = 'Y

I r T Q

Dynamaic structure of the energetic domains.

e Each domains is characterized by only 3 different types of physical
elements:

2 dynamic elements "D.” and "D;" which store the energy (i.e.
capacitors, inductors, masses, springs, etc.);

1 static element "R’ which dissipates (or generates) the energy
(i.e. resistors, frictions, etc.);

e The dynamics of physical systems can be described using 4 variables:

2 energy variables q¢. and q; which define how much energy is
stored within the dynamic elements;

2 power variables v, and v which describe how the energy moves
within the system.
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Capitolo 3. DYNAMIC MODELING 3.8
e Dynamaic structure of the energetic domains:
Electrical Mech. Tras. Mech. Rot. Hydraulic
D, | C Capacitor | M Mass J Inertia Ct Hyd. Capacitor
ge | @) Charge p  Momentum p Ang. Momentum V' Volume
ve |V Voltage r  Velocity w Ang. Velocity P Pressure
Dy | L Inductor E  Spring E Spring L; Hyd. Inductor
qr | ¢ Flux x  Displacement |6 Ang. Displacement | ¢; Hyd. Flux
vy | I Current I Force 7 Torque () Volume flow rate
R | R Resistor b  Friction b Ang. Friction R; Hyd. Resistor

e Graphical representations of the physical elements:
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Capitolo 3. DYNAMIC MODELING 3.9

e The dynamic element D. is characterized by:

1) an internal energy variable q.(t);

2) a through-variable vs(t) as input variable; or(8)
3) an across-variable v.(t) as output variable; !
4) a constitutive relation q. = ®.(v.) which !
links the internal energy variable ¢.(7) to T G.(1)
the output power variable v, (1); B-1(g)
5) a differential equation e (e
. !
Ge(t) = vs(?) Ve (1)
which links the internal energy variable Element D,

qc(t) to the input power variable vy(?);
6) the energy FE. stored in the dynamic element D, is function only of
the internal energy variable q.:

t de
E. = / V(1) vp(t) dt = / ® 1(q.)dg. = E.(q.).
0 0
where the following substitutions have been used:
ve(t) = .1 (qe) dg. = vy(t)dt

e Dynamic orientation and stored energy:

1) Integral 2) Derivative
Stored energy E.
+‘—A Ve +—’ A
| T Ve | ———— _
Clecta| || D) | e (ge)
e | Ee
} de } , de 5 e >
| 1 | 5 —
Uf ——— > Uf o— Y
TO BE USED | DO NOT USE
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Capitolo 3. DYNAMIC MODELING 3.10

e The dynamic element D has a structure which is “dual” respect to

the structure of dynamic element D,.

1) an internal energy variable q(t);

2) an across-variable v.(t) as input variable;

) (
3) a through-variable v;(t) as output variable; !
4) a constitutive relation gy = @ ¢(vy) which :

links the internal energy variable g¢(t) to T ar(t)

the output power variable v(?); 2 (gy)
. . ) q
5) a differential equation o
. !
Gr(t) = ve(t) vr(t)
which links the internal energy variable Element D

qf(t) to the input power variable v.(?);

The dual structure can be easily obtained performing the following substi-
tutions: q.(t) — qf(t), vi(t) > ve(t) and Do(v.) = Ps(vy).

e Dynamic orientation and stored energy:

1) Integral 2) Derivative
Stored energy F.
Ue +—’ Ve +‘—A A
| : i Vil _
| | df | [ df Ee N
Ay i E, v
%7 () B ICION N
Vf ee——Y Vf e—
TO BEUSED | DO NOT USE

e Note: the energy variables ¢. and ¢; are the integral of the
input power variables v((t) and v.(?):

t t
qe:/ ve(t)dt, qf:/ v(t) dt.
0 0
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Capitolo 3. DYNAMIC MODELING 3.11

e The static element 'R is completely characterized by a static function v, =

®r(vy) which links the input variable v to the output variable v..

1) Resistance 2) Conductance
Ve #‘—A Ve &——>
i T
| Prlyy) | PR ()
e |
(o :’—» vy :,(—V

e Dissipated power P, of the static element R.

A

ve Pp(vy)

vy

/ Ue

e The differential equation of a physical element can be obtained imposing
the time-derivative of the energy variable equal to the input power variable:

dqr(t

1) For Dy elements:  ¢¢(t) = v.(t) & q;; ) = V(1)
dq.(t

2) For D, elements:  ¢.(1) = v¢(?) & th< ) = vy(t)
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Capitolo 3. DYNAMIC MODELING

3.12

e Electromagnetic domain:

Name Constitutive Rel. | Linear case | Differentioal Eq.
D, |C Capacitor
dQ)
ge | QQ Charge Q=0c(V) |1Q=CV E:I
v. |V Voltage
Dy | L Inductor
do
qr | ¢ Flux o=Cr(l) | o=L1 | —=V
vy | I Current
R | R Resistance| V =®r(I) |V =RI

e Mechanic Translational domain:

Name Constitutive Rel. | Linear case | Differentioal Eq.
D.| M Mass
: . d P
¢. | P Momentum | P=®y(z) |\ P=Mz2z = F
v. | = Velocity
D;| E String
d
qr | * Displacement| z=®g(F) |z =EF d—f =1
vy | I Force
R | b Friction F=3q)x) | F=bx
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Capitolo 3. DYNAMIC MODELING 3.13

e Mechanic Rotational domain:

Name Constitutive Rel. | Linear case | Differentioal Eq.
D.|J Inertia
d P
¢. | P Ang. Momentum | P=®;w) |P=Jw — =T
v. | w Ang. Velocity
Dy | E Rot. Spring
do
qr | @ Ang. Displacement| 0 =®g(r) |0=FET il
vy | T Torque
R | b Rot. Friction T=%(w) | T=bw
e Hydraulic domain:
Name Constitutive Rel. | Linear case | Differentioal Eq.
D, |Cr Hyd. Capacitor
daVv
g | V' Volume V=0qP) |V=CP — =0
v. | P Pressure
Dy | Ly Hyd. Inductor
d
qr | ¢r Hyd. Flux dr=0L(Q) |¢r=1L;Q % — P
vy | @@ Volume flow rate
R | R Hyd. Resistor P=3%x(Q) |P=R;Q

Zanasi Roberto - System Theory. A.A. 2015/2016



Capitolo 3. DYNAMIC MODELING 3.14

Connection of physical elements

e Physical Elements. The physical systems are composed by physical
elements (PE) (i.e. dynamic elements D, and D or static element R)
which interact with the external world by means of two terminals:

P
a) ‘ b) g
Ufl I Vel ?)f \
_,‘7
1 !
| PE o Ve[i | PE
Uf2 | 2 | 2

Each terminal, see case a), is characterized by two power
variables (v.;, vs1) and (veo, v2). Choosing v. = v, — V.2 and
Uf = Uy = Uy as new power variables, the power interaction of the
PE with the external world can be described using the power section P in
case b).

e The value of the power P flowing through the section is the product of
the two power variables v.(%) and v(t):

P(t) = vo(t) vs(t)

The sign and the direction of power P(t) depend on the sign and the
reference positive direction chosen for the variables v.(Z) and v(%).

e The signs of the power P flowing through a physical section A-B are:

a) Power P flows from A to B b) Power P flows from B to A
£ Rl £ £
n ’Uf I ’Uf I /Uf I ’Uf I
g T e Ty .
g Uc| PE /Uc\ PE Ue| PE Uel PE
o) I I I I
o 1 | — /-
A-B A-B A-B A-B
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Capitolo 3. DYNAMIC MODELING 3.15

e Integral and derivative causality. The POG dynamic model of a
physical elements (PE), that is an element D,, D or R, can be graphically
described by using two block schemes having different orientation:

P Model vy — v, Model v, — vy
vpo 1l 2 B
'm UG;"— Ve f—
\
: & B
v } PE | |
! & |20 | 20)
I | I
® | |
2 Uf e—— Uf se——

Physical Element

The two possible “orientations” of the PE dynamic model are:

1) vy as input and v, as output: model vy — v,

2) v, as input and vy as output: model v. — vy.

The function ®(-) shown in the figures symbolically represents the dynamic
or the static equation describing the physical element.

e If PE is a static element R, the two diagrams are both suitable for descri-
bing the mathematical model of the physical element.

e If PE is a dynamic element D, or Dy, the two diagrams represent the two

possible causality modes of the physical element:

1) the integral causality ( ) is physically realizable, use-
ful in simulation and is the preferred dynamic model in the POG
technique.

2) the derivative causality (DO NOT USE) is still a correct ma-
thematical model of the PE, but it is not used in the POG technique
because it is not physically realizable and it is not useful in simulation.

Zanasi Roberto - System Theory. A.A. 2015/2016



Capitolo 3. DYNAMIC MODELING 3.16

e Each Physical Element (PE) interacts with the external world through the
power sections associated to its terminals. Two basic connections are
possible: sertes and parallel.

e Series: a Physical Element PE is connected in series if its terminals
share the same through-variable vy = v = vyo:

P Py

_— —_—>

v 1 2 U

:‘ PE ‘ >

A

| | v
| Kirchhoff's ! c2

\ \
\ \
\ \
\ \
| |
\ \
} . voltage law /‘ }
| \\ VKL // | Uf
‘ \* // ‘ ’
0 ¢ ¢ 0 (5] ()
\ \
\ \

1) POG scheme with output v

Physical Element connected in series

e The summation element is a mathematical description of the Voltage
Kirchhoff’s Law (VKL) applied to a “closed” path which involves the
across variables v.1, V.9 and v,

e Inverting the input and output paths of the POG block scheme 1) one
obtains the following equivalent POG block schemes:

.
fe 1(%%)

(Y TV
fl «—04—0‘ fQ

2) POG scheme with output v.1. | 3) POG scheme with output ..
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Capitolo 3. DYNAMIC MODELING

3.17

Parallel: a Physical Element PE is connected in parallel if its terminals

share the same across-variable v, = v.; = v,9:

Py P
Kirchhoff's P P
current law J CKL ﬁ
| CKL ' U | ///lk\\\ | U
! ///(ﬁ\\\ ! fl / f2
vf1 | | ™ | U2 R
> ® ‘ o —> | Uf |
A AN 7 LA \ !
\ s ‘ ‘ 7 |
| B | | |
| | | |
| | ~ ‘ v ‘
Vel | PE | Ve | ff( f) |
l , | | ' |
| | | |
} ‘ } 1 Ve }
@ ® ‘ ‘
| \ Vel Ve2
| 2 ; I I
|
_ . 1) POG scheme with output v,..
Physical Element connected in parallel ) Pt Te

e The summation element is a mathematical description of the Current
Kirchhoff’s Law (CKL) applied to a node which involves the through

variables vy, vy and vy.

e Inverting the input and output paths of the POG block scheme 1) one

obtains the following equivalent POG block schemes:

2) POG scheme with output ¥ 7.

3) POG scheme with output ¥ 9.
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Capitolo 3. DYNAMIC MODELING

3.18

Connecting physical elements

e Two physical elements PE; and PE; can be connected as follows:

Physical connection

Basic POG scheme

a) Series - Series

vf vr3 (O

A A A
! SmN e, - T
/Uel : // \‘ : {/ \y | "(}64
| \ VKL1 /‘ | \ VKL2 /' |
| R -~ | RN ~ |
| | |
Ve2 = Ve3
P P. P,
P —> VKL1 —» —»
b) Series - Parallel ey g
Vel . o p——>o Ued
Uy oE Vg Cku Vg T B Vg |
— 68— 1 > — — \ \ \
* b ! VN |
| | |
- Ve | ) | v |
val [ R | | felve) || Sr() |
ANV | | | |
RN ~
\ \ \
: : l I o Uf - v o
Ve2 = Ue3 Ur1 +<—} : ‘ Vfq
V3  ckiz
c) Parallel - Series
Uf1 Gk Uy Vs
—— - — > PE;, —9—
A - A A
| e~ =~
very | PE;| 1 Vo Ved
| | \ VKL2 /' |
| | N _ |
| l | |
Ve = Ue3
Py Ps Py
—» —> —»
d) Parallel - Parallel ‘ | y
Uel o ;\ >e Ucy
o KL g G2 Vg | v, 83 Jve |
-—> > —— [ [ [
A ?’ R, S R | | | |
I I | I I |
Ve | | Je(va) |
Vel : PE1 : ‘ PEQ : Veyq | ff(vf) | |
| | | \ \ \
| | | | | |
| l | l | | Uf | v |
I R R S
Ue2 = Ue3 Uf1 e d —— d » Ura
V3 okl K2
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3.19

e The basic POG scheme associated to a PE{-PE5 connection can be drawn

in four different ways. For the “Series - Series’ connection:

a) Series - Series

—»‘—+ - PE; ’ > PE, ‘—‘—“
| | |
: - \\\ :/0(33 - \\\ :
Vel | f \ | / \ 1 Ved

: \ VKL1 ’j : \ VKL2 ’j :

| 7/ | N 7/ |

I B I L I

| | |

Ve2 = Ve3
the following POG schemes can be used:
Basic POG scheme Inversion of the internal loop
Py Py Py Py Py Py
Vel ‘ ‘ ‘ Ve Vel ‘ ‘ ‘ Ve
| UE3 | | 3" |
G ol T e
| | , | | L |
| | | | | | _F }
L e ] b )
| | | | I ¢ | I |
B R .
! fool ! vy L ! D £
| | | | | |
UfL 4 g 4 Upa | UF1 b —  Uf4
Ufoy = V3

Inversion of the input path

Py

IS
S

Py

A
il
Aggﬁ&%\ -
| =

|

| |
| |
| |
| | |
| | |
@) o]
R
\ J[“F \
U T -

Ufg = Ufg

Veq ‘
} Vel \/ }
[ | [ [
| L. | I
[ 1 [ [
[ L] [ [
[ [ [
1 L 1
} 5 } yy }
T | I R
Ufa | Uf1 e a
Ufg :Ufg

e Other four possible POG block schemes can be obtained considering the

“upside down" versions of the above reported POG schemes.
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Capitolo 3. DYNAMIC MODELING 3.20

e Example. A C-parallel and R-series connection:

Kirchhoff's T T T T T T T T
Iy iu/rw'l*a\v\vf// 1 I \ e ‘
= 7 — Iy e 77 —— [
I 2 <57 [ T 1/ | |
[3 | V;l | 3 | |
Ci | 1 | 1 |
14 T__ / RV | =
| Kirchhoff's | | C's | R |
|\ voltage law | ‘ ‘
} \\\ ///Y\ : : ) y :
| * g T~ ‘ ) b7 I
1 \\\\'\ Kl»\r | ~ //‘ | ‘/2
@ ©) ® o @ o ®

The internal loop and the input path of the POG scheme CANNOT
be inverted because the capacitor must be described using its “integral
causality” model. The output path can be inverted.

e Example. A Ri-parallel and Ry-series connection:

Ry

: \ = N
& irslinsl
Vi Rll Vo | Rl | E |
| | | 2 ||

| vla—l%vz
® ©) ©) © @ ©

The following equivalent block schemes can be used:

Inversion of the internal loop | Inversion of the input path | Inversion of the output path

]’\ | \[ ]\ | \] [\ | \[
1v—><T>I,_—;T_{’—’?2 1Q,—_\T‘ﬁ<—l{—’?2 17—’<T<+"rr_?2
B T R R e 1]
1 1 L R
— l IR NG
| NIy | T
| | | | | | |
| |
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Capitolo 3. DYNAMIC MODELING 3.21

e Example. A C;-parallel and Cs-series connection:

[]_ 02 ]C | | |
‘\ II ]1\ | \]2
| | | |
| < | | Y |

¢ 1T

—1 | | | —_— |

V J—

== v s | G
| : : :

| | |
1 Viee—3—rsn Vs

® ©) ® © ® ©)

In this case there is only one POG block scheme that can be used for
describing the given physical system.

e Often, when two physical elements are connected, a feedback loop appears
in the corresponding POG block scheme. The following property holds.

e Property. All the loops of a POG scheme contains an odd
number of minus signs (i.e. black spots in the summation elements).

<]
_*
/
\
~

(
1
I
l
I
I
L
A

Example:

‘ " K
\ DR A AN i gy/N
| | T |

| = | | | ll ?,’\\\ |
= ! HEEETIEER !

! Lyl v ! I L B \

| A:E : :R : : :S:' : l| :

| X

e e | ey |

| [ (g | | LY1L  f1¥m |

| Lovf | | '1" L1 |

| s:‘\ ! I’ ! ! Il]_l“ | I-' ' |

B sl | L |

[ [ [ / [

[ +

| |

K]

fK'pf

All the five loops of this block scheme contain “one” minus sign.

e This rule can be used to verify the “consistency” and the correctness of
the considered POG block scheme.

Zanasi Roberto - System Theory. A.A. 2015/2016



Capitolo 3. DYNAMIC MODELING 3.22

e Examples of a “Parallel - Parallel’ connection.

Basic POG scheme Reduced POG scheme
f;
f e ‘ » £5 £ e » 5
| fs Tf | | |
| : | 4 | : |
| 1 | | | | 1 |
| Fs| | &G |Fs+G|
Coles | fes | i i
€1 ‘é< =; =é‘ (SD) €1 J‘n—ll—ﬂ‘. €9
€y €3
Electrical Mech. Traslational
I | Iy Ia) Py
I3 c Iy B3Ya I
= P B 2 1

f=I, F=C, e=V, G=%|f=F, F=M, e=v, G=3

Mech. Rotational Hydraulic

1 ) @1 _ Q2

3 4
wy w3T<Q>J w4TIJ::IJdt w2 Py P3T P4TNRZ‘ Py

f=7, F=J e=w, G=7|f=Q, F=Cj, e=P, G=y

t

The reduced model is obtained using the Mason formula:

1
F_S 1
Go(s) = —
1+E Fs+ G
F's
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e Examples of a “Series - Series’ connection.

Basic POG scheme Reduced POG scheme
€5
e e ST Y <.
| €3 | €y | | |
| | | | |
| 1 | ' | | 1 |
| - | | | - |
| Fs | | R | |Fs+R|
| | | | |
| | A | | |
B s | |
£ o - ~ I £ se—- f‘—" f5
f: 3
Electrical Mech. Traslational
L R E d
- 2 AT
I3 <— Iy «<—— 3  pp—
3 Vi U3 (]
1% Vo U1 v2

e=V,F=L f=1 R=R | e=v, F=F f=F, R=d

Mech. Rotational Hydraulic
L & L B,
L] 29— =&
3 %wg 4 %wél @3 P Q4 Py
wy w2 Py P

e=w, F=F, f=7, R=d, |le=P, F=L;,, t=0Q, R=R,

Zanasi Roberto - System Theory. A.A. 2015/2016



Capitolo 3. DYNAMIC MODELING

3.24

e Property. The direction of the power P flowing through a section of

a POG block scheme 2s “positive” if an “even” number of minus

stgns is present along the paths which goes from the input to the output.

Koy,

I* _
—J
[~

:

1G]

~

Q

>
>

<

| & |

— ] = — [ — ]

Let us consider, for example, the power section A-B which divides the

block scheme in two sections: P; and P,.
section P to section P5 because:

The power P flows from

— the red dashed path that goes from B to A within section Py contains

“zero" minus signs (i.e. an even number);

— the blue dashed path that goes from A to B within section P contains

“one” minus signs (i.e. an odd number);

e Using the previous rule it is possible to compute the positive direction of

the poter flows in each power section of a POG block schemes:

K,

K,
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one obtains:

Vi, and Q,

e The signs of the power flows depend on the sign of the power variables.

a) Changing the signs of variables

Capitolo 3. DYNAMIC MODELING

wy, and (), one obtains:

Eﬂ')/y

b) Changing the signs of variables

(), and F} one obtains:

c) Changing the signs of variables

AA.2015/2016
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° From,a\ POG block scheme:

From POG scheme to State space model

e

orresponding PO

K|

/

AN -/

N /
\\ /
G state space model:

Lo 0 VML J=Ra—Kn 0 W Uai| [10]p,
0 (Tt 0 | |aw Ky —bn —K,| |G|+ [00 [ Qa]
~—7 -l : /:r':\ 0
00 (Cyf| LI 0 Ky —op] iRy 01~
= ~— X A —— 5
L X
10 L fooTy,
Y=1 0 o 1 0 0
C D

e The following procedure must be used:

1) The components of the state vector x must be chosen equal to the

“output power variables’ of the dynamic elements:
T
x =1, wn Vo

2) The coefficients L, J,,, and Cj of the diagonal matrix L (i.e. the ener-
gy matrix) are the coefficients that links the “output power variables’

to the “internal energy variables’ within the constitutive relation:

Qb - La[a
p = mem
V = C()P()

L —

L, 0 0
0 Jn 0
0 0 Cy
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3) The coefficients A;; of matrix A are the gains of all the paths that
link the j-th state variables z; to the ¢-th input ¢; of the integrators.

=K =%,

Ky
L,0 071, SO AN L L] [10]ry,
0700 @ | = | Ko by =Ky | | 4]0 0 [Qa
00C||P SN P |o1] &2
Tv i 0 '\\IS?// Qp | N—— \\g_/ u
A
B 1 0 0 . 00 u
Y=1 0 0o 1 00
C D
The element Ay3 = — K, of matrix A, for example, is the gain of the

path that links the third state variable z3 = F, to the input ¢, = p of
the second integrator.

4) The coefficients B;;, Cj; and D;; of matrices B, C and D, respecti-
vely, can be determined in a similar way.

Coefficients “B;;" are the gains of the paths that link the j-th input
u; to the i-th input ¢; of the integrators. The coefficient B3y =
1, for example, is the gain of the path that goes from input us = Qg
to the input ¢3 of the third integrator.

Coefficients “C’j;" are the gains of the paths that link the j-th state
variable z; to the i-th output y; of the system;

Coefficients “D;;" are the gains of the paths that link the j-th input
u; to the i-th output y; of the system;
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Properties of a linear POG state space model

1) The energy matrix L is always symmetric and positive definite:

L, 0 0
L=L">0 = L=|0J, 0
0 0 C

2) The energy E; stored in the system can be expressed as follows:

1 1 1
E,= x'Lx>0 - E,=-L, 0%+ =
g% A= ptata t g

Matrix L is characterized by the coefficients of the constitutive
relations of the dynamic elements of the system.

1
megz + §Cop()2,

3) The power P, dissipated in the system can be expressed as follows:
Pi=x'A;x =  Pj=—RJ?— b’ — a,P?

(if L is constant) where A is the symmetric part of the power matrix A.

-R, 0 0
A+ AT “
0 0 —q

Matrix A is characterized by all the dissipative coefficients of the static
elements present in the system.

4) The power P, redistributed within the system is zero:
P,=x"A,x=0

where A, is the skew-symmetric part the power matrix A:

0 —K,, O
A — AT "
0 K, 0

Matrix A, is characterized by all the coefficients of the connecting
blocks present in the system.
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e Definition. A “Linear Time-invariant Power-Oriented Gra-
ph dynamic system” S is characterized by a state space differential
equation having the following structure:

Lx = Ax+ Bu
S=
y = Cx+ Du

where L is the energy matrix, A is the power matrix, B is the
input power matrix, C is the output matrix and D is the input-
output matrix. Moreover, a POG dynamic system satistfies the follo-

wing properties:
a) matrix L = LT > 0 is a symmetric semidefinite matrix;

b) the energy E, stored in the system can be expressed as follows:

E, = §XTLX > ()

c) the power P, dissipated in the system can be expressed as follows:

P, = x" Ax.

e Transformed POG systems. A POG dynamic system S can be
transformed using a “congruent” transformation x = T z:
S_{Lx =Ax+Bu ., = _ {EZ —Az+Bu

E—— S: -
y=Cx+Du y=Cz+Du

where S is the transformed system and (if matrix T is constant)
L=T'LT, A =TTAT, B =T'B, C=CT
e The transformed POG system S maintains the same properties of the

original POG system S.

e A “congruent” transformation x = T z does not require the calculation
of the the inverse of matrix T. It can be applied also when T is “singular”

or “rectangular”.
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Model reduction of a POG block scheme

e When a physical parameter of the system tends to zero (or to infinity) the
POG system degenerates towards a lower dimension dynamic system. The
POG dynamic model can be reduced “graphically” or “analytically”

e Graphical model reduction. Let us consider the following POG

scheme:

Km ‘ ‘Kp‘ ‘

Km ‘Kp‘

e When J,, = 0 the above POG block scheme cannot be used because the
term ﬁ present in the block scheme is infinite.

e In this case the central part (o) of the block scheme can be graphically
transformed as follows:

a) Loop top be inverted b) Inverted loop c) Simplified scheme

\
vl
/'

| | | |
| Ty | | |
| | I | | | |
| —1 [ | | | |
TR T I | S T
Ll . [
Pl A | T
I S L L b |
| A | | | T |
|| —L | g | | |
lJﬂg',lf | | |
} \__l(__/ } 1 ;
\w | | | |
@ " e ® @ ®
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e The simplified and transformed system has now the following structure:

K,

TT K K
IEY . 5
| | [

Ky

@ ®
e The corresponding POG state space model is:
. _//’_\\\////‘\2\\\ m |
[La 0] [1] | RO g A [ I, ]+ [1 0] [V] »
0 Cy B KmK;,\-// K2 B 01] [Qo
| b % T 5,

e Analytical model reduction. When J,,, = 0, the state space dyna-

mic model of the system can be rewritten as follows:

L, 0 0 I, —R,
00 0| |wn|=|Kn
0 0 Gyl | P 0

-K, 0 1, 10 v
—by, —K,| | wn | +]00 [Qa]
Kp — Q) P() 01 0

The second equation is an algebraic constraint between the state variables:

Kl — bypwm — K,Py =0

The angular velocity w,, can be expressed as follows:

K K
Wm = b Ia — 2 PO
by, b
e Applying the following “congruent” state space transformation:
I, 10 | ;
W | = llf—n’jf —f—nf [ Pa ] . & x=Tz
PO 0 1 \,O_/
N’ o -~ = 4
X T

to the given system one directly obtains the reduced system (*).
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