Observability and Constructability

- Observability problem: compute the initial state $\mathbf{x}\left(t_{0}\right)$ using the information associated to the input and output functions $\mathbf{u}(t)$ and $\mathbf{y}(t)$ of the given dynamic system in the time interval $t \in\left[t_{0}, t_{1}\right]$.
- Definition. The initial state $\mathbf{x}\left(t_{0}\right)$ of a dynamic system is compatible with the input and output functions $\mathbf{u}(\cdot)$ and $\mathbf{y}(\cdot)$ in the time interval $\left[t_{0}, t_{1}\right]$ if relation $\mathbf{y}(\tau)=\eta\left(\tau, t_{0}, \mathbf{x}\left(t_{0}\right), \mathbf{u}(\cdot)\right)$ holds for $\tau \in\left[t_{0}, t_{1}\right]$.
- Let:

$$
\mathcal{E}^{-}\left(t_{0}, t_{1}, \mathbf{u}(\cdot), \mathbf{y}(\cdot)\right)
$$

denote the set of all the initial states $\mathbf{x}\left(t_{0}\right)$ compatible with the input and output functions $\mathbf{u}(\cdot)$ and $\mathbf{y}(\cdot)$ in the time interval $\left[t_{0}, t_{1}\right]$.

- Constructability problem: compute the final state $\mathbf{x}\left(t_{1}\right)$ using the information associated to the input and output functions $\mathbf{u}(t)$ and $\mathbf{y}(t)$ of the given dynamic system in the time interval $t \in\left[t_{0}, t_{1}\right]$.
- Definition. A final state $\mathbf{x}\left(t_{1}\right)$ of a dynamic system is compatible with the input and output functions $\mathbf{u}(\cdot)$ and $\mathbf{y}(\cdot)$ in the time interval $\left[t_{0}, t_{1}\right]$ if it exists an initial state $\mathbf{x}\left(t_{0}\right) \in \mathcal{E}^{-}\left(t_{0}, t_{1}, \mathbf{u}(\cdot), \mathbf{y}(\cdot)\right)$ such $\mathbf{x}\left(t_{1}\right)=\psi\left(t_{0}, t_{1}, \mathbf{x}\left(t_{0}\right), \mathbf{u}(\cdot)\right)$.
- Let:

$$
\mathcal{E}^{+}\left(t_{0}, t_{1}, \mathbf{u}(\cdot), \mathbf{y}(\cdot)\right)
$$

denote the set of all the final states $\mathbf{x}\left(t_{1}\right)$ compatible with the input and output functions $\mathbf{u}(\cdot)$ and $\mathbf{y}(\cdot)$ in the time interval $\left[t_{0}, t_{1}\right]$.

- For time-invariant systems the two sets \mathcal{E}^{-}and \mathcal{E}^{+}are function only of the amplitude $t_{1}-t_{0}$ of the time interval and therefore in this case one can set $t_{0}=0$ and use the following simplified notation:

$$
\mathcal{E}^{-}\left(t_{1}, \mathbf{u}(\cdot), \mathbf{y}(\cdot)\right), \quad \mathcal{E}^{+}\left(t_{1}, \mathbf{u}(\cdot), \mathbf{y}(\cdot)\right)
$$

Discrete-time linear systems

Let us consider the following discrete-time linear system $\mathcal{S}=(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$:

$$
\left\{\begin{aligned}
\mathbf{x}(k+1) & =\mathbf{A} \mathbf{x}(k)+\mathbf{B} \mathbf{u}(k) \\
\mathbf{y}(k) & =\mathbf{C} \mathbf{x}(k)+\mathbf{D} \mathbf{u}(k)
\end{aligned}\right.
$$

Observability:

- Definition. The initial state $\mathbf{x}(0)$ is called unobservable in k steps if it belongs to the set $\mathcal{E}^{-}(k)=\mathcal{E}^{-}(k, 0,0)$, that is if it is compatible with the zero input and zero output functions, $\mathbf{u}(\tau)=0$ and $\mathbf{y}(\tau)=0$, in the time interval $\tau \in[0, k-1]$:

$$
0=\mathbf{y}(\tau)=\mathbf{C A}^{\tau} \mathbf{x}(0), \quad \text { for } \tau \in[0, k-1]
$$

that is if:

$$
\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
\mathbf{y}(0) \\
\mathbf{y}(1) \\
\vdots \\
\mathbf{y}(k-1)
\end{array}\right]=\underbrace{\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\vdots \\
\mathbf{C A}^{k-1}
\end{array}\right]}_{\mathcal{O}^{-}(k)} \mathbf{x}(0)=\mathcal{O}^{-}(k) \mathbf{x}(0)
$$

where $\mathcal{O}^{-}(k)$ denotes the observability matrix in k steps.

- The set $\mathcal{E}^{-}(k)$ of all the initial states $\mathbf{x}(0)$ which are unobservable in k steps is a vectorial space which is equal to the kernel of matrix $\mathcal{O}^{-}(k)$:

$$
\mathcal{E}^{-}(k)=\operatorname{ker}\left[\mathcal{O}^{-}(k)\right]
$$

- The unobservable subspaces $\mathcal{E}^{-}(k)$ satisfy the following chain of inclusions (n is the dimension of the state space):

$$
\mathcal{E}^{-}(1) \supseteq \mathcal{E}^{-}(2) \supseteq \ldots \supseteq \mathcal{E}^{-}(n)=\mathcal{E}^{-}(n+1)=\ldots
$$

- The smallest unobservable subspace $\mathcal{E}^{-}(n)$ is obtained, at most, in n steps.
- The set \mathcal{E}^{-}of all the initial states $\mathbf{x}(0)$ unobservable (that is unobservable in any number of steps) is a vectorial state space which is equal to the set $\mathcal{E}^{-}(n)$ of all the state space unobservable in n steps:

$$
\mathcal{E}^{-}=\mathcal{E}^{-}(n)=\operatorname{ker}\left[\mathcal{O}^{-}(n)\right]
$$

- The subspace \mathcal{E}^{-}is called unobservable subspace of the system and can be determined as follows:

$$
\begin{array}{|c}
\mathcal{E}^{-}=\operatorname{ker} \mathcal{O}^{-}
\end{array} \mathcal{O}^{-} \triangleq\left[\begin{array}{c}
\mathrm{C} \\
\mathrm{CA} \\
\vdots \\
\mathrm{CA}^{n-1}
\end{array}\right]
$$

where $\mathcal{O}^{-}=\mathcal{O}^{-}(n)$ denotes the observability matrix of the system.

- Definition. A system \mathcal{S} is called observable (or completely observable) if the subspace \mathcal{E}^{-}is equal to the zero state 0 .
- Property. A system \mathcal{S} is observable if and only if one of these relations holds:

$$
\begin{aligned}
& -\operatorname{ker} \mathcal{O}^{-}=\{0\} \\
& - \text { rango } \mathcal{O}^{-}=n
\end{aligned}
$$

- The initial state $\mathbf{x}(0) \in \mathcal{E}^{-}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))$ is compatible with the input and output functions $\mathbf{u}(\cdot)$ and $\mathbf{y}(\cdot)$ in the time interval $[0, k[$ if the following relation is satisfied for $\tau \in[0, k-1]$:

$$
\mathbf{y}(\tau)=\mathbf{C A}^{\tau} \mathbf{x}(0)+\sum_{i=0}^{\tau-1} \mathbf{C A}^{\tau-1-i} \mathbf{B u}(i)+\mathbf{D} \mathbf{u}(\tau)
$$

that is if

$$
\mathbf{y}_{l}(\tau)=\mathbf{C A}^{\tau} \mathbf{x}(0)
$$

where $\mathbf{y}_{l}(\tau)=\mathbf{y}(\tau)-\sum_{i=0}^{\tau-1} \mathbf{C A}^{\tau-1-i} \mathbf{B u}(i)-\mathbf{D} \mathbf{u}(\tau)$ is the "free output evolution" of the system. Function $\mathbf{y}_{l}(\tau)$ can be easily computed if the input and output functions $\mathbf{u}(\tau)$ and $\mathbf{y}(\tau)$ are known for $\tau \in[0, k-1]$.

- For time-invariant linear system the following relation holds:

$$
\mathcal{E}^{-}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))=\mathcal{E}^{-}\left(k, 0, \mathbf{y}_{l}(\cdot)\right)
$$

Note: the set $\mathcal{E}^{-}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))$ depends only on the parameter k and the fee output evolution $\mathbf{y}_{l}(\tau)$.

- Property. The set $\mathcal{E}^{-}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))$ is a "linear variety" which can be obtained adding a particular solution $\overline{\mathbf{x}}(0) \in \mathcal{E}^{-}\left(k, 0, \mathbf{y}_{l}(\cdot)\right)$ to the unobservable subspace $\mathcal{E}^{-}(k)=\mathcal{E}^{-}(k, 0,0)$ in k steps.

$$
\mathcal{E}^{-}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))=\overline{\mathbf{x}}(0)+\mathcal{E}^{-}(k)
$$

- Graphical representation:

- Setting $k=n$ in the previous relation, one obtains the set $\mathcal{E}^{-}(\mathbf{u}(\cdot), \mathbf{y}(\cdot))$ of all the initial states $\mathbf{x}(0)$ which are compatible with the functions $\mathbf{u}(\cdot)$ and $\mathbf{y}(\cdot)$ in any number of steps:

$$
\mathcal{E}^{-}(\mathbf{u}(\cdot), \mathbf{y}(\cdot))=\overline{\mathbf{x}}(0)+\mathcal{E}^{-}
$$

This set contains only one element $\overline{\mathbf{x}}(0)$ for each couple of functions $\mathbf{u}(\cdot)$ and $\mathbf{y}(\cdot)$ is and only if $\mathcal{E}^{-}=0$, that is if the system is completely observable. So, the following property holds.

- Property. If a linear system is observable, then it exists only one initial state $\overline{\overline{\mathbf{x}}}(0)$ compatible with any couple of input and output functions $\mathbf{u}(k)$ and $\mathbf{y}(k)$ in the time inteval $k \in[0, n]$.

Constructability:

- Is the problem of finding the final state $\mathbf{x}(k)$ at time k compatible with the input and output functions $\mathbf{u}(0), \ldots, \mathbf{u}(k-1)$ and $\mathbf{y}(0), \ldots, \mathbf{y}(k-1)$.
- If the system is observable in k steps, then the set $\mathcal{E}^{-}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))$ contains only one element $\overline{\mathbf{x}}(0)$ and therefore the final state $\overline{\mathbf{x}}(k)$ is unique:

$$
\overline{\mathbf{x}}(k)=\mathbf{A}^{k} \overline{\mathbf{x}}(0)+\sum_{i=1}^{k-1} \mathbf{A}^{k-1-i} \mathbf{B u}(i)
$$

- On the contrary, if the system is unobservable in k steps, then it is $\mathcal{E}^{-}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))=\overline{\mathbf{x}}(0)+\mathcal{E}^{-}(k)$, and therefore the set $\mathcal{E}^{+}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))$, of all the final states $\overline{\mathbf{x}}(k)$ compatible with the input and output functions $\mathbf{u}(\cdot)$ and $\mathbf{y}(\cdot)$ has the following structure:

$$
\mathcal{E}^{+}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))=\overline{\mathbf{x}}(k)+\underbrace{\mathbf{A}^{k} \mathcal{E}^{-}(k)}_{\mathcal{E}^{+}(k)}
$$

- The set $\mathcal{E}^{+}(k, \mathbf{u}(\cdot), \mathbf{y}(\cdot))$ is obtained adding a particular solution $\overline{\mathbf{x}}(k)$ to the subspace $\mathcal{E}^{+}(k)$ of all the final states "non constructable" in k steps:

$$
\mathcal{E}^{+}(k)=\mathbf{A}^{k} \mathcal{E}^{-}(k)
$$

- A system is constructable in k steps if $\mathcal{E}^{+}(k)=\mathbf{A}^{k} \mathcal{E}^{-}(k)=\{0\}$, that is

$$
\mathcal{E}^{-}(k) \subseteq \operatorname{ker} \mathbf{A}^{k}
$$

- A system is constructable if it exists a k such that $\mathcal{E}^{-}(k) \subseteq \operatorname{ker} \mathbf{A}^{k}$.
- It takes n steps, at most, for a discrete system to be constructable. So, the constructability condition can be expressed in the following way:

$$
\mathcal{E}^{-}=\operatorname{ker} \mathcal{O}^{-} \subseteq \operatorname{ker} \mathbf{A}^{n}
$$

- Note: from this last relation it follows that the observabilty implies the constructability, but not vice versa:

Observability \Rightarrow Constructability

Example. Let us consider the following discrete linear system:

$$
\left\{\begin{aligned}
\mathbf{x}(k+1) & =\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right] \mathbf{x}(k)+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right] \mathbf{x}(k)
\end{aligned}\right.
$$

Compute the set of all the initial states $\mathrm{x}_{0}=\mathbf{x}(0)$ compatible with the free output evolution: $y(0)=2, y(1)=2, y(2)=0$.

The observability matrix of the system is:

$$
\mathcal{O}^{-}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 2 \\
2 & -2 & 2
\end{array}\right], \quad \operatorname{det} \mathcal{O}^{-}=4
$$

Since \mathcal{O}^{-}is not singular, the system is completely observable, and therefore if the system has a solution, then it has "only one" solution. The solution \mathbf{x}_{0} can be determined as follows:

$$
\left[\begin{array}{l}
y(0) \\
y(1) \\
y(2)
\end{array}\right]=\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\mathbf{C A}^{2}
\end{array}\right] \mathbf{x}_{0}=\mathcal{O}^{-} \mathbf{x}_{0} \quad \rightarrow \quad \mathbf{x}_{0}=\left[\mathcal{O}^{-}\right]^{-1}\left[\begin{array}{l}
y(0) \\
y(1) \\
y(2)
\end{array}\right]
$$

that is:

$$
\mathbf{x}_{0}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 2 \\
2 & -2 & 2
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}
2 & -2 & 1 \\
2 & -1 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

So, the only initial state compatible with the given free output evolution is $\mathbf{x}_{0}=[0,1,1]$.
Note: the free output evolution $y(\tau)$ is also determined for $\tau \geq 3$:

$$
y(\tau)=\mathbf{C A}^{\tau} \mathbf{x}_{0}
$$

Example. Let us consider the following discrete linear system:

$$
\left\{\begin{aligned}
\mathbf{x}(k+1) & =\left[\begin{array}{rrr}
0 & 1 & 1 \\
-2 & 2 & 2 \\
0 & 1 & 1
\end{array}\right] \mathbf{x}(k)+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \mathbf{x}(k)
\end{aligned}\right.
$$

Compute the set of all the initial states $\mathbf{x}_{0}=\mathbf{x}(0)$ compatible with the free output evolution: $y(0)=2, y(1)=2, y(2)=4$.

The system is not completely observable:

$$
\mathcal{O}^{-}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-2 & 2 & 2 \\
-4 & 4 & 4
\end{array}\right] \quad \rightarrow \quad \mathcal{E}^{-}=\operatorname{span}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

The set of all the initial conditions compatible with the free output evolution $y(0)=2$, $y(1)=2, y(2)=4$ can be determined computing a particular solution \mathbf{x}_{p} and adding the unobservable space \mathcal{E}^{-}. The particular solution \mathbf{x}_{p} can be determined solving the following equation

$$
\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-2 & 2 & 2 \\
-4 & 4 & 4
\end{array}\right] \mathbf{x}_{p} \quad \leftrightarrow \quad \mathbf{y}=\mathcal{O}^{-} \mathbf{x}_{p}
$$

A solution exists because the vector y belongs to the image of matrix \mathcal{O}^{-}.

$$
\mathbf{y} \in \operatorname{Im}\left(\mathcal{O}^{-}\right) \quad \rightarrow \quad \mathbf{x}_{p}=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]
$$

So, the set of all the initial states x_{0} compatible with the free output evolution is the following:

$$
\mathbf{x}_{0}=\mathbf{x}_{p}+\mathcal{E}^{-}=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]+\operatorname{span}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Example. Let us consider the following discrete linear system:

$$
\left\{\begin{aligned}
\mathbf{x}(k+1) & =\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{x}(k)+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] \mathbf{x}(k)
\end{aligned}\right.
$$

Compute the set of all the initial states $\mathbf{x}_{0}=\mathbf{x}(0)$ compatible with the free output evolution:: $y(0)=1, y(1)=1, y(2)=1$.

The observability matrix of the system is:

$$
\mathcal{O}^{-}=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 0 \\
4 & 2 & 0
\end{array}\right]
$$

Since the rank of matrix \mathcal{O}^{-}is 2 , the system is not completely observable. The set of all the initial states $\mathbf{x}_{0}=\mathbf{x}(0)$ compatible with the free output evolution: $y(0)=1, y(1)=1$, $y(2)=1$ satisfies the following relation:

$$
\mathbf{y}=\left[\begin{array}{l}
y(0) \\
y(1) \\
y(2)
\end{array}\right] \neq \mathcal{O}^{-} \mathbf{x}_{0} \quad \leftrightarrow \quad\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \neq\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 0 \\
4 & 2 & 0
\end{array}\right] \mathbf{x}_{0}
$$

The vector \mathbf{y} cannot be obtained as linear combination of the columns of matrix \mathcal{O}^{-}, and therefore the given problem does not have solutions. There are no initial states \mathbf{x}_{0} which are compatible with the given free output evolution.

Property. The initial state $\overline{\mathbf{x}}_{0}$ of minimum norm which minimizes the Euclidean norm $\left\|\mathbf{y}-\mathcal{O}^{-} \mathbf{x}_{0}\right\|$ is obtained as follows:

$$
\overline{\mathbf{x}}_{0}=\left(\mathcal{O}^{-}\right)^{T} \mathbf{N}\left(\mathbf{N}^{T} \mathcal{O}^{-}\left(\mathcal{O}^{-}\right)^{T} \mathbf{N}\right)^{-1} \mathbf{N}^{T} \mathbf{y}
$$

where matrix \mathbf{N} is a base matrix of $\operatorname{Im}\left(\mathcal{O}^{-}\right)$:

$$
\operatorname{Im}(\mathbf{N})=\operatorname{Im}\left(\mathcal{O}^{-}\right)
$$

The columns of matrix \mathbf{N} are a set of linearly independent columns of matrix \mathcal{O}^{-}.

Invariant continuous-time linear systems

Let $\mathcal{S}=(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ be an invariant continuous-time linear system:

$$
\left\{\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t) \\
\mathbf{y}(t) & =\mathbf{C} \mathbf{x}(t)+\mathbf{D} \mathbf{u}(t)
\end{aligned}\right.
$$

The observability and constructability properties of the continuous-time systems are very similar to those described for of the discrete-time system.

Observability:

- Definition. An initial state $\mathbf{x}(0)$ is unobservable in the time interval $[0, t]$ if it is compatible with the zero input and output functions, $\mathbf{u}(\tau)=0$ and $\mathbf{y}(\tau)=0$, for $\tau \in[0, t]:$

$$
0=\mathbf{C} e^{\mathbf{A} \tau} \mathbf{x}(0), \quad \text { for } \tau \in[0, t]
$$

- The set $\mathcal{E}^{-}(t)$ of the initial states $\mathbf{x}(0)$ unobservable in $[0, t]$ is a vectorial subspace:

$$
\mathcal{E}^{-}(t)=\operatorname{ker} O_{t}
$$

where O_{t} denotes the linear operator $O_{t}: \mathbf{X} \rightarrow \mathcal{Y}(t)$ which provides the free output evolution $y(\tau) \in \mathcal{Y}(t)$ corresponding to the initial state $\mathbf{x}(0) \in \mathbf{X}$:

$$
O_{t}: \mathbf{x}(0) \rightarrow \mathbf{C} e^{\mathbf{A} \tau} \mathbf{x}(0), \quad 0 \leq \tau \leq t
$$

- Property. The unobservable subspace $\mathcal{E}^{-}=\mathcal{E}^{-}(t)$ does not depend on the length of the time interval $t>0$ and it is equal to the kernel of the same observability matrix \mathcal{O}^{-}defied for the discrete-time systems.

$$
\mathcal{E}^{-}=\operatorname{ker}\left[\mathcal{O}^{-}\right]
$$

- So, for continuous-time systems, the computation of the initial state $\mathbf{x}(0)$ compatible with the input and output functions $\mathbf{u}(\cdot)$ and $\mathbf{y}(\cdot)$ does not depend on the length of he time interval $[0, t]$, provided it is not zero, but it depends only on the rank of the observability matrix \mathcal{O}^{-}.

Constructability:

- For continuous-time system the observability is equivalent to the constructability. In fact, in this case, the unobservable and the unconstructable subspaces \mathcal{E}^{-}and \mathcal{E}^{+}are linked by the following relation:

$$
\mathcal{E}^{+}=e^{\mathbf{A} t} \mathcal{E}^{-}
$$

- Since matrix $e^{\mathbf{A} t}$ is always invertible, for any matrix \mathbf{A}, the two subspaces \mathcal{E}^{+}and \mathcal{E}^{-}always have the same dimension. Moreover, it can be proved that they are equal:

$$
\mathcal{E}^{+}=\mathcal{E}^{-}
$$

- From this last relation it follows that for continuous-time systems the osservability implies and is implied by the constructability:

Observability \Leftrightarrow Constructability

Duality

- Given a continuous or discrete-time system $\mathcal{S}=(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$, the system $\mathcal{S}_{D}=\left(\mathbf{A}^{T}, \mathbf{C}^{T}, \mathbf{B}^{T}, \mathbf{D}^{T}\right)$, is called the dual system of system \mathcal{S}.

No. of inputs of system $\mathcal{S}=$ No. of outputs of system \mathcal{S}_{D}
No. of outputs of system $\mathcal{S}=$ No. of inputs of system \mathcal{S}_{D}

- Reachability and observability properties. The reachability and observability matrices \mathcal{R}_{D}^{+}and \mathcal{O}_{D}^{-}of the dual system \mathcal{S}_{D} are linked to the reachability and observability matrices \mathcal{R}^{+}and \mathcal{O}^{-}of system \mathcal{S} as follows:

$$
\begin{gathered}
\mathcal{R}_{D}^{+}=\left[\mathbf{C}^{T} \mathbf{A}^{T} \mathbf{C}^{T} \ldots\left(\mathbf{A}^{T}\right)^{n-1} \mathbf{C}^{T}\right]=\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\vdots \\
\mathbf{C A}^{n-1}
\end{array}\right]^{T}=\left(\mathcal{O}^{-}\right)^{T} \\
\mathcal{O}_{D}^{-}=\left[\begin{array}{c}
\mathbf{B}^{T} \\
\mathbf{B}^{T} \mathbf{A}^{T} \\
\vdots \\
\mathbf{B}^{T}\left(\mathbf{A}^{T}\right)^{n-1}
\end{array}\right]=\left[\mathbf{B} \mathbf{A B} \ldots \mathbf{A}^{n-1} \mathbf{B}\right]^{T}=\left(\mathcal{R}^{+}\right)^{T}
\end{gathered}
$$

- Property. For the systems \mathcal{S} and \mathcal{S}_{D} the following properties hold:

| \mathcal{S} reachable | $\Leftrightarrow \mathcal{S}_{D}$ observable |
| :--- | :--- | :--- |
| \mathcal{S} observable | $\Leftrightarrow \mathcal{S}_{D}$ reachable |
| \mathcal{S} controllable | $\Leftrightarrow \mathcal{S}_{D}$ constructable |
| \mathcal{S} constructable | $\Leftrightarrow \mathcal{S}_{D}$ controllable |

- If two equivalent systems \mathcal{S} and \mathcal{S}^{\prime} are linked by the state space transformation $\mathrm{x}=\mathbf{T} \mathbf{x}^{\prime}$, then the corresponding dual system \mathcal{S}_{D} and \mathcal{S}_{D}^{\prime} are linked by the state space transformation $\mathbf{x}_{D}=\mathbf{P} \mathbf{x}_{D}^{\prime}$ where $\mathbf{P}=\mathbf{T}^{-T}$:

$$
\begin{array}{ll}
\mathcal{S}=(\mathbf{A}, \mathbf{B}, \mathbf{C}) & \stackrel{\mathbf{T}}{\Rightarrow} \mathcal{S}^{\prime}=\left(\mathbf{T}^{-1} \mathbf{A} \mathbf{T}, \mathbf{T}^{-1} \mathbf{B}, \mathbf{C T}\right) \\
& \Uparrow \text { Duality } \\
\Uparrow \text { Duality } & \\
\mathcal{S}_{D}=\left(\mathbf{A}^{T}, \mathbf{C}^{T}, \mathbf{B}^{T}\right) \stackrel{\mathbf{P}}{\Rightarrow} \mathcal{S}_{D}^{\prime}=\left(\mathbf{T}^{T} \mathbf{A}^{T} \mathbf{T}^{-T}, \mathbf{T}^{T} \mathbf{C}^{T}, \mathbf{B}^{T} \mathbf{T}^{-T}\right)
\end{array}
$$

Osservability standard form

- Property. A linear system $\mathcal{S}=\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}$ (continuous or discrete) not completely observable can always be brought into "observability standard form", that is, system \mathcal{S} is algebraically equivalent the a transformed system $\overline{\mathcal{S}}=\{\overline{\mathbf{A}}, \overline{\mathbf{B}}, \overline{\mathbf{C}}, \overline{\mathbf{D}}\}$ where the matrices $\overline{\mathbf{A}}=\mathbf{P}^{-1} \mathbf{A P}$, $\overline{\mathbf{B}}=\mathbf{P}^{-1} \mathbf{B}, \overline{\mathbf{C}}=\mathbf{C P}$ and $\overline{\mathbf{D}}$ have the following structure:

$$
\begin{array}{ll}
\overline{\mathbf{A}}=\left[\begin{array}{ll}
\overline{\mathbf{A}}_{1,1} & \mathbf{0} \\
\overline{\mathbf{A}}_{2,1} & \overline{\mathbf{A}}_{2,2}
\end{array}\right] & \overline{\mathbf{B}}=\left[\begin{array}{l}
\overline{\mathbf{B}}_{1} \\
\overline{\mathbf{B}}_{2}
\end{array}\right] \\
\overline{\mathbf{C}}=\left[\begin{array}{ll}
\overline{\mathbf{C}}_{1} & \mathbf{0}
\end{array}\right] & \overline{\mathbf{D}}=\mathbf{D}
\end{array}
$$

- Let be $\rho=n-\operatorname{dim} \mathcal{E}^{-}<n$. The transformation matrix \mathbf{P} which brings the system into the observability standard form has the following structure:

$$
\mathbf{P}^{-1}=\left[\begin{array}{l}
\mathbf{R}_{1} \\
\mathbf{R}_{2}
\end{array}\right], \quad \mathbf{x}=\mathbf{P} \overline{\mathbf{x}}
$$

where $\mathbf{R}_{1} \in \mathbf{R}^{\rho \times n}$ is composed by ρ linearly independent rows of the observability matrix \mathcal{O}^{-}, and $\mathbf{R}_{2} \in \mathbf{R}^{(n-\rho) \times n}$ is a free matrix chosen such that the transformation matrix \mathbf{P}^{-1} is non singular.

- Proprerty. The subsystem of dimension ρ characterized by matrices $\overline{\mathbf{A}}_{1,1}$ and $\overline{\mathrm{C}}_{1}$ is completely observable.
- The subsystem $\left(\overline{\mathbf{A}}_{1,1}, \overline{\mathbf{B}}_{1}, \overline{\mathbf{C}}_{1}\right)$, is called observable subsystem and it represents the part of the original system which is observable.
- The subsystem ($\left.\overline{\mathbf{A}}_{2,2}, \overline{\mathbf{B}}_{2}, 0\right)$, characterized by matrices $\overline{\mathbf{A}}_{2,2}, \overline{\mathbf{B}}_{2}$ and $\overline{\mathrm{C}}_{2}=0$, is called unobservable subsystem and it represents the part of the system which does not influence in any way the system output \mathbf{y}.
- Also in this case the eigenvalues of matrix \mathbf{A} are split in two sets: the eigenvalues of the observable part of the system (the eigenvalues of matrix $\overline{\mathbf{A}}_{1,1}$) and the eigenvalues of the unobservable part (the eigenvalues of of matrix $\overline{\mathbf{A}}_{2,2}$).
- For the discrete case, let us divide the state vector $\overline{\mathbf{x}}(k)$ in two parts: the observable part $\overline{\mathbf{x}}_{1}$ and the unobservable part $\overline{\mathbf{x}}_{2}: \overline{\mathbf{x}}=\left[\begin{array}{ll}\overline{\mathbf{x}}_{1} & \overline{\mathbf{x}}_{2}\end{array}\right]^{T}$, where $\operatorname{dim} \overline{\mathbf{x}}_{1}=\rho$. The equations of the system are:

$$
\begin{cases}\overline{\mathbf{x}}_{1}(k+1)= & \overline{\mathbf{A}}_{1,1} \overline{\mathbf{x}}_{1}(k)+ \\ \overline{\mathbf{x}}_{2}(k+1)= & \overline{\mathbf{B}}_{1} \mathbf{u}(k) \\ \mathbf{y}(k)= & \overline{\mathbf{C}}_{2,1} \overline{\mathbf{x}}_{1}(k)+\overline{\mathbf{A}}_{2,2}(k)+ \\ \overline{\mathbf{x}}_{2}(k)+ & \overline{\mathbf{B}}_{2} \mathbf{u}(k) \\ \mathbf{y} \mathbf{D} \mathbf{u}(k)\end{cases}
$$

The corresponding block scheme is:

- A similar decomposition holds also for continuous-time systems.
- Property. The transfer matrix $\mathbf{H}(z)$ [o $\mathbf{H}(s)$] of a linear system is equal to the transfer matrix of the observable part: $\mathbf{H}(z)$ [o $\mathbf{H}(s)$] is influenced only by the matrices $\left(\overline{\mathbf{A}}_{1,1}, \overline{\mathbf{B}}_{1}, \overline{\mathbf{C}}_{1}\right)$ of the observable subsystem.
Proof. The transfer matrix $\mathbf{H}(z)=\mathbf{C}(z \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}=\overline{\mathbf{C}}(z \mathbf{I}-\overline{\mathbf{A}})^{-1} \overline{\mathbf{B}}$ is:

$$
\begin{aligned}
\mathbf{H}(z) & =\left[\begin{array}{ll}
\mathbf{C}_{1} & 0
\end{array}\right]\left[\begin{array}{cc}
z \mathbf{I}-\mathbf{A}_{1,1} & 0 \\
-\mathbf{A}_{2,1} & z \mathbf{I}-\mathbf{A}_{2,2}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{B}_{1} \\
\mathbf{B}_{2}
\end{array}\right]= \\
& =\left[\begin{array}{ll}
\mathbf{C}_{1} & 0
\end{array}\right]\left[\begin{array}{cc}
\left(z \mathbf{I}-\mathbf{A}_{1,1}\right)^{-1} & 0 \\
* * * * & \left(z \mathbf{I}-\mathbf{A}_{2,2}\right)^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{B}_{1} \\
\mathbf{B}_{2}
\end{array}\right]= \\
& =\mathbf{C}_{1}\left(z \mathbf{I}-\mathbf{A}_{1,1}\right)^{-1} \mathbf{B}_{1}
\end{aligned}
$$

Example. Let us consider the following time-continuous linear system

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\left[\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \mathbf{u}(t) \\
y(t)=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \mathbf{x}(t)
\end{array}\right.
$$

Bring the system in the observability standard form.
Sol. The observability matrix of the system is:

$$
\mathcal{O}^{-}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 1 & -2 \\
-3 & -3 & 0
\end{array}\right] \quad \rightarrow \quad \operatorname{det} \mathcal{O}^{-}=0
$$

Matrix \mathcal{O}^{-}is singular. The system is not completely observable and therefore it is possible to compute the transformation matrix \mathbf{P} which brings the system into the observability standard form:

$$
\mathbf{P}^{-1}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
\hline 1 & 0 & 0
\end{array}\right] \quad \rightarrow \quad \mathbf{P}=\left[\begin{array}{rrr}
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right]
$$

The transformed system has the following form:

$$
\left\{\begin{array}{l}
\dot{\overline{\mathbf{x}}}(t)=\left[\begin{array}{ll|l}
1 & -2 & \mathbf{0} \\
2 & -1 & \mathbf{0} \\
\hline 1 & -1 & 0
\end{array}\right] \overline{\mathbf{x}}(t)+\left[\begin{array}{c}
2 \\
0 \\
\hline 1
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll|l}
1 & 0 & \mathbf{0}
\end{array}\right] \overline{\mathbf{x}}(t)
\end{array}\right.
$$

The unobservable part of the system is "simply stable" because it has an eigenvalues located in the origin: $s=0$.

The transfer matrix:

$$
G(s)=\mathbf{C}_{o}\left(s \mathbf{I}-\mathbf{A}_{o}\right)^{-1} \mathbf{B}_{o}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s-1 & 2 \\
-2 & s+1
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\frac{2(s+1)}{s^{2}+3}
$$

if a function only of the observable part of the system.

