
Capitolo 0. INTRODUCTION 8.1

Equilibrium points: continuous-time systems

• Let us consider the following continuous-time linear system
{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

• The equilibrium points x0 of the system when the input is constant u(t) =

u0 can be determined imposing ẋ = 0:

Ax0 +Bu0 = 0, → x0 = −A−1Bu0

• If matrix A is invertible, the system has only one equilibrium point x0.

• If matrix A is singular (that is if matrix A has at least one eigenvalue in

the origin) we can have two different cases:

1) there are infinite equilibrium points. This situation happens when:

rank[A] = rank[AB]. In this case all the solutions can be determined

adding the kernel of matrix A to a particular solution x̄0:

x0 = x̄0 + ker[A]

2) there are no equilibrium points. This situation happens when: rank[A] 6=

rank[AB].

• The output value y0 corresponding to the particular equilibrium point (x0,

u0) can be directly obtained using the output equation:

y0 = Cx0 +Du0

If matrix A is invertible, the following relation holds:

y0 = −CA−1Bu0+Du0 = [C(sI−A)−1B+D]s=0u0 = H(s)s=0u0

where H(s) denotes the transfer matrix of the system.

• For linear systems the stability of an equilibrium point does not depend

on the point itself, but it depends on the stability of the system which is

completely determined by the position of the eigenvalues of matrix A.
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Equilibrium points: discrete-time systems

• Let us consider the following discrete-time linear system:
{

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

• When the input is constant u(t) = u0, the equilibrium points x0 of the

system can be determined imposing x(k + 1) = x(k) = x0:

x0 = Ax0 +Bu0, → x0 = (I−A)−1Bu0

• In this case the system has only one equilibrium point x0 if and only if

matrix (I−A) is invertible.

• If matrix (I−A) is singular (that is if matrix A has at least one eigenvalue

in z = 1), then the system:

1) has infinite equilibrium points if rank[I−A] = rank[(I−A) B]:

x0 = x̄0 + ker[I−A]

2) does not have equilibrium points if rank[I−A] 6= rank[(I−A) B].

• The output value y0 corresponding to the equilibrium point (x0, u0) can

be determined as follows:

y0 = Cx0 +Du0.

• If matrix (I−A) is invertible, then the following relation holds:

y0 = C (I−A)−1Bu0+Du0 = [C(zI−A)−1B+D]z=1u0 = H(z)|z=1 u0

where H(z) denotes the transfer matrix of the discrete system.

• The static gain H(z)z=1 of the transfer matrix H(z) is infinite if matrix

I−A has at least one eigenvalue in the origin, that is if matrix A has at

least one eigenvalue in z = 1.
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Equilibrium points: nonlinear systems

• Let us now consider the following continuous-time nonlinear system:
{

ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))

When the input is constant u(t) = u0, the equilibrium points x0 can be

determined imposing ẋ = 0:

f(x0,u0) = 0

• The nonlinear vectorial static equation f(x0,u0) = 0 must be solved with

respect to variable x0. For nonlinear systems all these cases are possible:

1) no equilibrium points; 2) only one equilibrium point; 3) a finite number

of equilibrium points; 4) an infinite number of equilibrium points; ecc.

• The output value y0 corresponding to the equilibrium point (x0, u0) can

be directly determined using the output equation:

y0 = g(x0,u0).

• For nonlinear systems the stability is NOT a global property of the system,

but a “local” property of the considered equilibrium point x0. In this case

a stability analysis must be done for “each” equilibrium point x0.

• Let us now consider the case of a discrete-time nonlinear system:
{

x(k + 1) = f(x(k),u(k))

y(k) = g(x(k),u(k))

• When the input is constant u(t) = u0, the equilibrium points x0 of the

discrete system can be determined imposing x(k + 1) = x(k) = x0:

x0 = f(x0,u0)

This nonlinear vectorial static equation must be solved with respect to

unknown variable x0.
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Linearization in the vicinity of an equilibrium pont

• Let us consider the following continuous-time nonlinear system:
{

ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))

and let x0 be an equilibrium point of the system corresponding to the

constant input u0.

• Expanding the functions f(x,u) and g(x,u) in the vicinity of the equili-
brium point (x0, u0) using the Taylor series, one obtains:

f(x,u) = f(x0,u0)
︸ ︷︷ ︸
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where h1(·) and h2(·) denote high order infinitesimals which are supposed

to be negligible in the vicinity of the equilibrium point (x0, u0).

• Using the new system variables x̃ = x−x0, ỹ = y−y0 and ũ = u−u0,

one obtains the following linearized system:
{

˙̃x(t) = Ax̃(t) +B ũ(t)

ỹ(t) = C x̃(t) +Dũ(t)

where the system matrices have the following structure:
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• The stability of a nonlinear system in the vicinity of an equilibrium point

(x0, u0) can be studied applying the “reduced Lyapunov criterium” to the

linearized system.
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• For discrete-time nonlinear system:
{

x(k + 1) = f(x(k),u(k))

y(k) = g(x(k),u(k))

the linearization in the vicinity of an equilibrium point (x0,u0) can be done

exactly in the same way as it has been done for the continuous-time case:
{

x̃(k + 1) = Ax̃(k) +B ũ(k)

ỹ(k) = C x̃(k) +Dũ(k)

The matrices A, B, C and D can be obtained using the same expressions

shown above.

• For computing the system matrices, it is useful to remember that the

nonlinear vectors f(x, u) e g(x, u) have the following structure:

f(x, u) =








f1(x, u)

f2(x, u)
...

fn(x, u)







, g(x, u) =








g1(x, u)

g2(x, u)
...

gm(x, u)








and that matrices A, B, C and D can be computed as follows:
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• The obtained Jacobian matrices have the following dimensions: A ∈

Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m.
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