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Abstract

In the paper the Power-Oriented Graphs (POG) techniqueerd its modellingn-phase per-
manent magnet synchronous motors. The POG technique igphigahmodelling technique
which uses only two basic blocks (the “elaboration” and ‘feection” blocks) for modelling
physical systems. Its main characteristics are the fofigwit keeps a direct correspondence
between pairs of system variables and real power flows; the BIGcks represent real parts of
the system; it is suitable for representing physical systbath in scalar and vectorial fashion;
the POG schemes can be easily transformed, both grapharailynathematically; the POG
schemes are simple, modular, easy to use and suitable foatolu The POG model of the
considered electrical motor shows very well, from a “powgeoint of view, its internal struc-
ture: the electric part of the motor interacts with the medtel part by means of a “connection”
block which neither store nor dissipate energy. The dynanadel of the motor is as general
as possible and it considers an arbitrary odd number of ghas#an arbitrary number of har-
monics of the rotor flux waveform. Generalized orthonormaths$formations allow to write the
dynamic equations of the system in a very compact way. Theeimedinally implemented
with Matlab/Simulink software. The Simulink structure dietmotor clearly reflects its POG
representation. Simulation results are then presentedittate the machine model.

Keywords: Modelling, Simulation, multi-phase synchronows motors, arbitrary rotor flux,
Graphical modelling techniques, Power-Oriented Graphs.
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1 Introduction will be used for representing the sum of a succession

A well known graphical technique for modelling phys-Of numbersc, where the index: ranges from: to b

ical systems is th&ond Graphs technique, see [1], [2] WIT mc.:rgmgentd thatis, using the Matlab symbology,
and the references therein. This modelling techniqu%_ o+ d < b). _ ) )

uses power interaction between systems as the basién€ Symbol/z| will be used for denoting the integer
concept for modelling. It has also a formal graphicaPart ofz rounded towards below.

language to represent the basic components that mayhe symboll,,, will be used for denoting the identity
appear in a broad range of physical systems. Hownatrix of orderm.

ever this technique has few drawbacks: the graphicalynction mod (6, 27) is the remainder of variabte
schematic representation needs more than 10 symba@lger division by coefficientr.

to represent physical systems and it is not easily read-

able; the “power” variables must be classified in “ef- .
fort” and “flow” variables and finally the implemen- 2 The bases of Power-Oriented Graphs

tation of the bond graphs on a general purpose comfyg “power-Oriented Graphs” are “signal flow graphs”
puter simulator may require a non trivial “translation” .o mpined with a particular “modular” structure essen-
(causality problem). tially based on the two blocks shown in Fig. 1. The ba-
As for Bond Graphs, the basic idea of théower-  SiC characteristic of this modular structure is the direct
Oriented Graphs (POG) modelling technique is to use correspondence between pairs of system variables and
the power interaction between subsystems as basic cdgal power flows: the product of the two variables in-
cept for modelling. Please refer to [3], [4] and [5] forvolved in each dashed line of the graph has the physical
further details. This approach allows the modellingneaning of “power flowing through the section”. The
of a wide variety of systems involving different ener-

getic domains. Differently from the bond graphs tech- X1 +—» L Xo x1 e K | xo
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nique, the POG modelling technique uses only three ba- |
sic symbols, it does not need to classify the power vari- |
ables and it solves directly the causality problem. By }
this way, the POG schemes are easily readable, close to |
the computer implementation and allow reliable simu- }
|
I
|

lations using every computer simulator. A list of refer-
ences of examples of application of the POG technique
Y

can be found in [6]. Y se—

[
|
|
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The paper is organized in the following way. Section 2_. . ] .

states the basic properties of the POG modelling tec%—'g't.1 lesmkblo%ks. elaboration block (e.b.) and con-
nique. Section 3 shows the details of POG modellinaeC ion block (c.b.).

of n-phase permanent magnet synchronous motors. Fi-

nally, in Section 4 some simulations are reported. two basic blocks shown in Fig. 1 are named “elabora-

1.1 Notations tion block” (e.b.) and “connection block” (c.b.). The
) ) ) circle present in the e.b. is a summation element and
In the paper the following notations will be used: the black spot represents a minus sign that multiplies
- Row matrices: the entering variable. There is no restrictiorsoandy
i other than the fact that the inner prodygty) = x"y
[Ri]=] R R ... R, ] must have the physical meaning of a “power”.
1n
) . The e.b. and the c.b. are suitable for representing both
- Column and diagonal matrices: scalar and vectorial systems. In the vectorial c&s@,)
Ry Ry andK are matricesG(s) is always squardg can also
i Ry i R be rectangular. While the elaboration block can store
[Ri]l=1] . |, [Ri]= _ and dissipate energy (i.e. springs, masses and dampers),
Lin : Lin K the connection block can only “transform” the energy,
R, Ry, that is, transform the system variables from one type of
_ A energy-field to another (i.e. any type of gear reduction).
Full matrices: In the linear vectorial case whe®(s) = [M s + R]?,
Bu Rz - Bam (M is symmetric and positive definite) the enerfjy
|Z R ]7| - Ryt Rop -+ Rom stored in the e.b. and the powe& dissipating in the
Ll : : . : e.b. can be expressed as:
Rnl RnQ e an 1
- The symbol E; = §yTMy, Py=yRy
b
Z Cn = Ca + Catd + Catr2d + Catsd + .. There is a direct correspondence between POG repre-

sentations and the corresponding state space descrip-

n=a:d



tions. For example, the system

Lx
y

can be represented by the POG scheme shown in Fig. 2.

Ax + Bu

Bix L=L">0 (1)

|
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Fig. 3 Structure of a five-phase motor in the case of sin-
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1 1 Lt 1 gle polar expansiom(= 1)
[ [ [ A
| | ¥ |
| | |
| | 1 | 1 m :number of motor phases;
| - | ¥ | p :number of polar expansions;

Y4B+ . — 6, :rotor angular position;

_ ) ] w, :rotor angular speed,;
Fig. 2 POG block scheme of a generic dynamic system. ¢ : electric anglef = p6,;
N. :number of coils for each phase;

:i-th phase resistancg € 1);

. i-th phase self induction coefficient & 1);
:mutual induction coefficient of-th phase
coupled withj-th phasef = 1);

When an eigenvalue of matrik tends to zero (or to  #(¢) :rotor permanent magnet flux;

infinity), system (1) degenerates towards a lower di¢-(¢) :total rotor flux chained with stator phase 1;
mension dynamic system. In this case, the dynamiéi(¢) : total rotor flux chained with stator phaséh;
model of the “reduced” system can be directly obtained ¢~ - Maximum value of functiom(6);

from (1) by using a simple “congruent” transformation ¥c :mMaximum value of functio.(6);
X = Tz (T is constant); J. :rotor inertia momentum;

b, :rotor linear friction coefficient;
7. . electromotive torque acting on the rotor;
7. :external load torque acting on the rotor;

TLT% — T"ATz+T'Bu Ts — Az+Bu ~ :basic angular displacement;
{ y=B"Tz < y=B'z Fluxes¢(0) and¢.(6) satisfy relations:

S5z

=

¢c(9) =pN. ¢(9) =pNcor ¢(9) = Pc ¢(9)

whereL = T'LT, A = T'AT andB = T'B. If Wherep. = p N, ¢, and¢(0) is the rotor flux function
matrix T is time-varying, an additional terff™L Tz  normalized respectively to its maximum valge.
appears in the transformed system. When mattiis
rectangular, the system is transformed and reduced
the same time.

Ia?t v = %” denote the basic angular phase displace-
ment for electrical motors withn phases. Referring to
the considered multi-phase electrical motor, the follow-
ing hypotheses are assumed:

H1) Functiong(6) is periodic with perio®;

H2) Functiong(f) is an even function of;

H3) Functiong(6 + %) is an odd function o,

In this paper we will refer only to permanent magneti4) Foré = 0 the rotor flux¢.(6) chained with phase
synchronous electrical motors with add number of 1 IS maximum; _ o )
phases. In Fig. 3 it is shown the electromechanicdl®) The electrical motor is homogeneous in its electri-
structure of a five-phase motor in the case of single p&al characteristics.

lar expansion{ = 1). The considered multi-phase The electrical coupling of a generic couple of phases
electrical motor is characterized by the following pa-andj of the motor is shown Fig. 4. The differential
rameters: equation describing the dynamic behaviour of thh

3 Electrical motors modelling
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Fig. 5 POG scheme of the multi-phase motor dynamic model.

motor (see H5) we have that:

ot [ 59,
— (bd_(e) be(0 —27) (4)
Pen@ 1| 6.6 — (m-1)7)

denote the vector of “chained total magnetic

fluxes” defined in (3):

&.(1,0) = LI+ ®.(0) (5)

whereL > 0 is the following positive-definite symmet-

d NCi . . .
Vi Vo-pRil,  i=1,..m () ematc
. . _ Ly M2 Mg Mim
whereV; — 1, is the voltage applied to theth phase My Lo My My,
and¢,; is the total magnetic flux chained with tl¢h M3 My  Ls Ms
. L=p m
phase: . . .
Min Mo Mam, Lum

Gei =pLili+p Y Ml +6:(0). (3)

=1, j#i

The system ofm

differential equations (2) can be

V, represents the reference common voltage for all tH€Wwritten in matrix form as:

phases. If then phases are star-connected it can be

shown thatl, is the voltage at the star centre and d®.(1,9) —V-RI (6)
Vo = 5 i~y Vi. However, when the system is star- dt
connected the input v_oltagéxs are defined \_N|t_h a de- whereR is the diagonal matrix:
gree of freedom, so without loss of generality in (2) one
can setly = 0. If the m phases are independeit, ;
is the ground voltage and in this case too one can set R=p[R].
; plR:]
Vo = 0. Let’s introduce the vectors: 1:m
I Vi From Egs. (4) and (5) we have that:
I Va
= . 5 V = . E
L, Vi .
d(LT) — V-RI-p 0P.(0) ) %
and let’s indicate with® . () the vector of chained rotor dt _\‘?9_/

fluxes. Due to the magnetic symmetry of the electrical

K- (0)
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Fig. 6 POG scheme of a multi-phase electrical motor in thesfamed spacg,, .

where K, (9) = p22@ s the vector that multi- From (7) and (10) one obtains vectir, (6):

plied byw, gives the counter-electromotive forcBs=

K. (f)w acting on the electrical part of the motor. The h
differential equation describing the mechanical part of > )
the motor is: K. (0) =pec|| - Z naysin[n(@—h~)] || (11)
n=1:2
d Jr - 0:m—1
(dtw):Tr_Te_brwr- (8)
Since the energy®(I,w,,6,) stored in the electro- Let us now consider the two following orthonormal
mechanical system is: transformations:
E(Lw,,0,) = ~TLI+ ?%T)(e)ﬂbf 2 2 | & B
o) =5 oL ABeWh) g len iy [ [ eos(hky), —sin(hky) ], [[ 5]
m [om—1 L:2im—2 (L V]
the electromotive torque can be calculated as follows:
O0E(I,w,,0,) o®.(0) k
Tr = 0. =P 5 I=K.(0)L cos(kf)  sin(k0) 0
! —_— T, = —sin(kf) cos(kf) ’
K;(G) 1:2:m—2
0 , 1

Relations (7) and (8) can be graphically represented

by the POG scheme shown in Fig. 5. The elaboratiomatrix *T, is similar to the generalized Concordia
blocks present between the power sectighsand®  transformation but with a permutation on columns. This
represent thelectrical part of the system, while the matrix transforms the system variables from the orig-
blocks between sectio@sandd represent thélechan-  inal reference framé&, to an intermediate reference
ical part of the system. The connection block presenframe ¥;,. Matrix *T,, represents a multiple rotation
between section® and ® represents the conversionin the state space as function of the electrical motor
of energy and powers (without accumulation nor dissiangled. This matrix transforms the system from the
pation) between the electrical and mechanical domainstermediate reference frani, to final rotating ref-
Functiong.(6) is even and periodic of periddir so it  erence frameZ,,. The product of these two matrices
can be developed in Fourier series of cosines with onlyT, = ‘T, * T, is still an orthonormal transformation,

odd harmonics: from X; to X, with the following structure:
de(0) = @c d(0) = . an cos(nd).  (9) Mk h ]
sin(k (6 — h))
1:22m—2 0:m—

From (4) and (9) it follows that vectob.(f) can be I 2
rewritten in a compact form as: w ¢

o [ %
®.(0) = . l 3 an cos[n(e_m)]”. (10) - o -
n=1:2

0 Since the multi-phase motor is homogeneousin its elec-




trical characteristics, see hypothesis H5, we can set shown in Fig. 6. Note that the POG scheme is easy to
read, it clearly shows the sections where powers flow

M; j = Mo cos((i — 7)) (the thin dashed lines) and it has a direct correspon-
L, = Ao + My i,j €{1,2,..,m}  dence with the state space description (13). Moreover,
R, = R this POG scheme can be directly introduced (more or

less “as it is”) and simulated in Simulink.

whereA, and M, are proper parameters characterizing 1 Fourier series of the rotor flux

the self and mutual induction coefficients of the motor

phases. Applying transformatiéi,, to matriced.,, R The Fourier series of some periodic rotor fluxes of prac-
andK () one obtains the following transformed ma-tical interest are listed below.

trices*L = “T; L'T,, “R and“K.(6): - Trapezoidal waveform, see Fig. 8:
[Ag+232 0 0 0 - 0]
0 Ag+23e 0 0 -0
" 0 0 Ag 0 --- 0
L=p 0 0 0 Ag--- 0 |
: : oo 0
L 0 0 0 0 - Agl
WR: thRtTw:R:pRImy _
— Fig. 8 Trapezoidal waveform(¢) with 0 < a < 7.
“K,(0) = “T: K, (0) = P ¥y 5
- :
- . - 4 X T\ sin(na)
> [(n+k) an+ (n—k) an ] sin(nf) $(0) == > sin(nz cos(nf). (14)
n=0:2m i n=1:2 ( 2) an?
> (12)  The Fourier series of th&quare and Triangular wave-
D [(n+F) ansp—(n—Fk) an ] cos(nd) forms can be easily obtained from (14) by setting, re-
n=0:2m spectivelya = 0 anda = 3.
L:2:m—2 - - Cosinusoidal interpolatated waveform.  The signal
V3 Z nay sin (n6) ¢(0) shown in Fig.9 is defined as follows:
L n=m:2m i (z)(e)
Note that vector K, (¢) is composed only by harmon- /%m{g)g_a

ics sin(nd) andcos(nf) wheren is an integer number
multiple of 2m. Moreover, vectorK . (6) can be eas-
ily computed knowing the coefficients, of the Fourier

series of the rotor flux, see Eq. (9).

In the transformed space,,, the dynamic equations of
the multi-phase electrical motor (both mechanical and . o
electrical parts) can be represented in compact form asFig. 9 Cosinusoidal interpolatated wavefout?).

e =R E
—| = T |5 —| T | ==
0 JJr ]| dor Ko 1 b e Te 2_a cos (ﬂ-—0> + g —a, 0€]0,q]

(13) () ={ 7 20
where“I = “T, 1, “V = “T, V and matrixJ, is: -0, 0 € o %]
k Its Fourier series is:
J, = kwe 0 . o~ 4mcos(na)
w e 9) = 0).
ol ¢(0) n;2 W2(r2 — dn?a?) cos(nd)
0 1

The normalized function is:
If the m phases of the rotor are star-connected then
>, I; = 0and s0“I,, = 0. In this case then-th b(0) = 9(0) . (15)
equation of system (13) is a static relation that can be (2> 4 5 —a)
eliminated letting the system reduce to order- 1.

The POG scheme describing the considered multi- Odd polynomial interpolation. Let us consider the
phase electrical motor in the transformed spageis  family of periodic signals(r, 8) shown in Fig.10




dlase rgy 0 e
bolr) = e SIS (7, e TT 420 | sinten)+
=0 j=i
il e e
+ (_1)1+1< > >(om)21+1 IT (1 +25)| cos(an)
i=0 j=i+1

Fig. 7 General formula for computing coefficientsr) of Fourier series of signals(r, ).

o(r,0)
1 r 2
/ X - .
=T\ 2 - @2 T g
-1 Fig. 11 Periodic signalg(q, 0) for ¢ = 2,4,6.
Fig. 10 Periodic signalg(r, ¢) forr = 3,5,7. whereg(q, 6) is a polynomial § is even) with the fol-
lowing structure:
o(r, 0) = é(r, 0), 0€0,a] (4,0) = co(q) + c2(0)0” + ca(@)8" + .. + c4(q)6°.
0, € o %] The polynomial coefficients;(¢) can be computed, for
1€ {(_),_ 2, ..., q}, considering the following continuity
whereé(r, 0) is a polynomial { is odd) with the fol- ~conditions:
lowing structure: (5((]’ Q) =T-a
qz(r, 0) = di(r)0 + ds3(r)0> + ... + d,.(r)6". ¢'(g, ) = —1

¢ (q,a)=0 for j=2,...,4
The polynomial coefficients; () can be computed, for

i€ {1,3, ..., r},considering the following continuity The Fourier series of signafgq, 0) is:

conditions: ~ oo
o, a) =1 #(g,0) = > an(g) cos(nd) (17)
gz’)/(r7 a) =0 n=1:2

where the series coefficients,(¢q) can be obtained
from the coefficients,, (r) reported in Fig. 7 as follows:

_ _ ba(r)
The Fourier series of signajgr, 0) is an(q) = "

~rr+1

HF)r, ) = 0

r=q—1

The normalized signals

é(r, 0) = Y by(r) sin(nd) (16)

ey - 1
n=l2 #(q, 0) = CO—@¢(Qa 0) (18)
where coefficientd,,(r) can be calculated using the ) ) o
general formula reported in Fig. 7. ](c:_a_n be o(bt)alned from signajgq, 0) dividing by coef-
icient co(q):
- Even polynomial interpolation. Let us consider the 0
family of periodic signalg)(q, #) shown in Fig.11: 2
II @i+y
n

E—G, 96[(1 ]

5(q,0), 6¢€l0,a e
¢>(q,9)—{¢(q b ool j (g =35 -« o '
2 2



Note that the derivativ@% of signal¢(q, ) when

q = 2 has a trapezoidal shape and so for this type of rc

tor flux the counter-electromotive forc&s= K, ()w

have a trapezoidal shape proportional to the motor ve

locity w, see eq. (7).

4 Simulations

The POG scheme shown in Fig. 6 has been imple .
mented in Simulink. Simulations described in this Sec=
tion have been obtained using the following electrica=

and mechanical parameters: = 5, p = 4, R = 31,
Lo = 0.1H, My = 0.08 H, N. = 100, N, = 200,
o, = 0.02W, J,, = 1.6 kgm?, b,, = 0.8 Nm s/rad.

. . . (@]
ParameterV, is the number of harmonics considered=
in Fourier series expansion of the rotor flux function. ° 0s

Angular velocityw,. of the motor

w

25

151

o
)

Velocity w, [rad/s]

I
o
o

_
5 -1oo

o
i -150

* Timel[s]

The simulations have been obtained with star connected _
phases and using for the rotor flux the cosinusoidal irFig. 13 Angular velocityw, of the motor and electro-

terpolated waveform () with o = £, see (15). Sym-

motive torquer, generated by the motor currertk

metric input voltages have been considered, it is to say:

Vi = Vi cos(2m t + i), i€{0,1,..., m}
with V, = 80 V. Attime ¢t = 2 s the load torque,

switches from0 to 100 Nm. Figs. 12, 13 and 14 show = so
the simulation results obtained for the following vari-

ables: phase currenftsand“TI in the 3, andX,, refer-

ence frames; motor angular velocity; electromotive
torquer,; symmetricm-phases input voltage¥ and

counter-electromotive voltagesE in the transformed
Y., reference frame.

Phase currentkin the reference framg;

= PooccnonoN0n0N)
IR

|
N

o

05 35

° Time[s]
Fig. 12 Phase currenisand“I in the originalX; and
in the transformed:,, reference frame respectively.

Let us now consider the control laW = V,,.S;, for

i€4{0,1,..., m}, where:
1 0; € [t +a, 27 — a
S; = -1 éiE[a,F—a]
0 otherwise (19)
0; = mod (6 4 (i — 1), 27)

Symmetricm-phases input voltagéé

VAARNEARANEAAR)
DRI

5!a%ack electromotive voltagesE generated by velocity,

100

—

i

3.

I
1.

25 4

=)

|
N
1)
3

\oltages”E [V]

-150 L L L L I I
0

* Timel[s]

Fig. 14 Symmetricm-phases input voltageV and
counter-electromotive voltagésE in the transformed
Y., reference frame.

tion(® of these schemes the connection block shown in
Fig. 15.

The simulation results shown in Figs. 16 and 17 refer to
the same system parameters used in the previous sim-
ulation except for: number of polar expansipr= 1;

the load torque is applied at timte= 1.5; for the ro-

tor flux it has been chosen the normalized even poly-
nomial interpolation functiory(q, 8) with ¢ = 2 and

a = %, see (18). In this case the shape of the counter-
electromotive voltage§&; is trapezoidal as it is evident

in the upper part of Fig. 17. This type of control gen-
erates high torques. when the angular velocity,. is
small, see the upper part of Fig. 16 and the lower part
of Fig. 17. The behaviour of the controlled system is
stable with compared to the variations of the external

This control law can be applied to the POG scheme®rquer., in fact the motor torque, increases to face
shown in Figs. 5 and 6 by connecting at the power sethe increased external torqug see Fig. 17.



5 Conclusions

In this paper a-phase permanent magnet synchronous
motor has been modelled using the Power-Oriented
Graphs (POG) technique. This approach exhibits some
advantages in comparison with other graphical tech-
niques and allows to realize a very compact model
scheme. Moreover it can be easily translated into a
Simulink model. Some simulations are carried out in
order to show the effectiveness of the realized model
in the case of a five-phase motor with star connection
configuration. A brief list of Fourier series of the ro-
tor flux signals has been presented and then used in the
Simulink model.

=
<

3
T

1

(5]

%
1:m

©)
©

Fig. 15 POG connection block that can be used to a&— References
ply the control law (19) to the POG schemes shown if1] Paynter, H.M. Analysisand Design of Engineering

Figs. 5 and 6. Systems, MIT-press, Camb., MA, 1961.

[2] D. C. Karnopp, D.L. Margolis, R. C. Rosem-
_ Angular velocityw, of the motor berg, System dynamics - Modeling and Smulation
9 ‘ ‘ ‘ ‘ ‘ of Mechatronic Systems, Wiley Interscience, ISBN

N
=]
T
I

0-471-33301-8, 3rd ed. 2000.

[3] R. Zanasi, “Power Oriented Modelling of Dynami-
cal System for Simulation\MACS Symp. on Mod-
elling and Control of Technological System, Lille,

. ‘ ‘ ‘ ‘ ‘ France, May 1991.

0 0s ! 18 2 25 *  [4] R. Zanasi, K. Salisbury, “Dynamic Modeling, Sim-
ulation and Parameter Identification for the WAM
Arm”, A.l. Memo No. 1387, MIT, Cambridge, USA,
August 1992.

[5] Zanasi R., “Dynamics of a-links Manipulator by
Using Power-Oriented GraphSYROCO ' 94, Capri,
Italy, 1994.

[6] R. Morselli, R. Zanasi, “Modeling of Automotive

25 3 Control Systems Using Power Oriented Graphs”,

32nd Annual Conference of the IEEE Industrial

Fig. 16 Angular velocity, and phase currenisof the Electronics Society, IECON 2006, Parigi, 7-10

motor. Novembre, 2006.

[7] E. Semall, X. Kestelyn, A. Bouscayrol, “Right Har-
Counter-electromotive voltagds monic Spectrum for the Back-Electromotive Force

! ‘ ‘ ! ! of a n-phase Synchronous Motor”, Industry Appli-

] cations Conference, 2004, 39th IAS Annual Meet-
ing, ISBN: 0-7803-8486-5.

[8] E. Semail, X. Kestelyn, A. Bouscayrol, “Sensi-
tivity of a 5-phase Brushless DC machine to the
7th harmonic of the back electromotive force”, 35th

N
@
T
I

Velocity w, [rad/

Phase currentkin the reference framg;

w
S

N
S

,,,,,,,,,,,

Currentdl [A]
o
gt
S
o
===
T

------- www""“’

Time [s]

IS
S

N
S
T

\oltagesE [V]

o ° ' " ’ s : Annual IEEE Power Electronics Specialists Confer-
0 Motor torquer; ence, 2004.

Emo

IZI 80

.

ql; 60

g. 40

|§ 20

2.5 3

Time [s]
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