Teoria dei Sistemi e del Controllo Compito A del 25 gennaio 2011 Domande ed esercizi

Nome:			
Nr. Mat.			
Firma:			
C.L.:	Info.	Elet.	Telec.

1. Scrivere la soluzione generale dell'equazione differenziale matriciale lineare e tempo-variante $\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$ essendo $\mathbf{x}(t_0)$ lo stato all'istante iniziale t_0 :

$$\mathbf{x}(t) = \mathbf{\Phi}(t, t_0)\mathbf{x}(t_0) + \int_{t_0}^t \mathbf{\Phi}(t, \tau)\mathbf{B}(\tau)\mathbf{u}(\tau)d\tau$$

2. Scrivere la forma esplicita della matrice di transizione dello stato $\Phi(k, h)$ di un sistema dinamico $\mathbf{x}(k+1) = \mathbf{A}(k)\mathbf{x}(k) + \mathbf{B}(k)\mathbf{u}(k)$ discreto lineare tempo-variante:

$$\mathbf{\Phi}(k,h) = \begin{cases} \mathbf{A}(k-1)\dots\mathbf{A}(h+1)\mathbf{A}(h) & \text{se } k > h \\ \mathbf{I} \text{ (Matrice identità)} & \text{se } k = h \end{cases}$$

3. Scrivere la soluzione esplicita dell'equazione alle differenze $\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k)$ essendo $\mathbf{x}(h)$ lo stato all'istante iniziale h.

$$\mathbf{x}(k) = \mathbf{A}^{k-h}\mathbf{x}(h) + \sum_{j=h}^{k-1} \mathbf{A}^{k-j-1}\mathbf{B}\mathbf{u}(j)$$

4. Calcolare la matrice di raggiungibilità \mathcal{R}^+ e la matrice di osservabilità \mathcal{O}^- del seguente sistema:

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u(t) \\ u(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}(t) \end{cases} \mathcal{R}^{+} = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}, \quad \mathcal{O}^{-} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix},$$

5. Sia dato un sistema dinamico "POG" lineare nella forma $\mathbf{L}\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$, $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$ con \mathbf{L} matrice simmetrica definita positiva. Quali di queste espressioni esprime in modo corretto la matrice di trasferimento $\mathbf{H}(s)$ che lega il vettore d'ingresso $\mathbf{U}(s)$ al vettore d'uscita $\mathbf{Y}(s)$?

$$\bigcap \mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

$$\bigotimes \mathbf{H}(s) = \mathbf{C}(s\mathbf{L} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

$$\bigcirc \mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{L}^{-1}\mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

6. Una matrice \mathbf{A} di dimensione n è diagonalizzabile

- \bigotimes se ha n autovalori reali distinti;
- \bigotimes se ha n autovettori linearmente indipendenti;
- \bigotimes se i miniblocchi di Jordan hanno tutti dimensione unitaria;
- O se gli autovalori sono radici multiple del polinomio caratteristico;
- 7. Si consideri il problema di controllo punto a punto per un sistema lineare tempo-discreto. Tra le infinite soluzioni \mathbf{u} che permettono far passare il sistema dallo stato iniziale $\mathbf{x}(0)$ allo stato finale $\mathbf{x}(k)$ nell'intervallo di tempo [0, k] indicare la struttura della soluzione \mathbf{u} che minimizza la norma eucludea $||\mathbf{u}||$:

$$\mathbf{u} = (\mathcal{R}_k^+)^T [\mathcal{R}_k^+ (\mathcal{R}_k^+)^T]^{-1} [\mathbf{x}(k) - \mathbf{A}^k \mathbf{x}(0)]$$

8. Disegnare lo schema a blocchi associato al seguente sistema tempo-continuo posto in forma canonica di Jordan dove $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\mathrm{T}}$.

$$\begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} \mathbf{x}(t) \end{cases}$$

9. Calcolare, in funzione della condizione iniziale $\mathbf{x}(0) = [x_1(0), x_2(0), x_3(0), x_4(0)]^T$, l'evoluzione libera del seguente sistema autonomo tempo-continuo:

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} \mathbf{x}(t) \quad \mathbf{x}(k) = \begin{bmatrix} e^{2t} & t e^{2t} & \frac{t^2}{2} e^{2t} & 0 \\ 0 & e^{2t} & t e^{2t} & 0 \\ 0 & 0 & e^{2t} & 0 \\ 0 & 0 & 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \\ x_4(0) \end{bmatrix}$$

10. Data la funzione di trasferimento G(s), scrivere la struttura del corrispondente sistema dinamico in forma canonica di raggiungibilità indicando con u(t) l'ingresso e con y(t) l'uscita:

$$G(s) = 2 + \frac{3s^3 + 6s^2 + 2s + 4}{s^4 + 2s^3 + 5s^2 + 3s + 7}$$

$$\begin{cases}
\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -7 & -3 & -5 & -2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u(t) \\
y(t) = \begin{bmatrix} 4 & 2 & 6 & 3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 2 \end{bmatrix} u(t)$$

- 11. Sia dato un sistema lineare SISO del quarto ordine (n=4), completamente osservabile, caratterizzato dalle matrici \mathbf{A} , \mathbf{b} e \mathbf{c} .
 - a) Indicare la struttura delle matrici \mathbf{A}_o , \mathbf{b}_o e \mathbf{c}_o della corrispondente forma canonica di osservabilità. Sia $p(\lambda) = \lambda^4 + \alpha_3 \lambda^3 + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0$ il polinomio caratteristico della matrice \mathbf{A} .

$$\mathbf{A}_{o} = \begin{bmatrix} 0 & 0 & 0 & -\alpha_{0} \\ 1 & 0 & 0 & -\alpha_{1} \\ 0 & 1 & 0 & -\alpha_{2} \\ 0 & 0 & 1 & -\alpha_{3} \end{bmatrix}, \qquad \mathbf{b}_{o} = \begin{bmatrix} b_{0} \\ b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}, \qquad \mathbf{c}_{o} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$$

b) Indicare inoltre la struttura della matrice \mathbf{P} che, unita alla trasformazione $\mathbf{x} = \mathbf{P}\mathbf{x}_o$, porta il sistema originario in forma canonica di osservabilità.

$$\mathbf{P} = [(\mathcal{O}_c^-)^{\text{-}1}\mathcal{O}^-]^{\text{-}1} = \left(\left[egin{array}{cccc} lpha_1 & lpha_2 & lpha_3 & 1 & 0 \ lpha_2 & lpha_3 & 1 & 0 \ lpha_3 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \end{array}
ight] \left[egin{array}{c} \mathbf{c} \mathbf{A} \ \mathbf{c} \mathbf{A}^2 \ \mathbf{c} \mathbf{A}^3 \end{array}
ight]
ight)^{\text{-}1}$$

12. Sia dato un sistema dinamico SISO lineare e tempo continuo: $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t)$, $y(t) = \mathbf{c}\mathbf{x}(t)$ con $\mathbf{A} \in \mathbf{R}^{n \times n}$, $\mathbf{b} \in \mathbf{R}^{n \times 1}$ e $\mathbf{c} \in \mathbf{R}^{1 \times n}$. Indicare il numero totale N di parametri a_{ij} , b_i e c_j non costanti che caratterizza una qualsiasi forma canonica del sistema di partenza:

$$N = 2n$$

13. Enunciare il Lemma di Heymann:

Se (\mathbf{A}, \mathbf{B}) è raggiungibile e se \mathbf{b}_i è una colonna non nulla di \mathbf{B} , allora esiste una matrice $\mathbf{M}_i \in \mathcal{R}^{m \times n}$ tale che $(\mathbf{A} + \mathbf{B}\mathbf{M}_i, \mathbf{b}_i)$ è raggiungibile.

- 14. Dato il sistema lineare tempo-continuo $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$, riportare la struttura di:
 - a) uno stimatore asintotico dello stato in catena chiusa di ordine pieno:

$$\dot{\hat{\mathbf{x}}}(t) = (\mathbf{A} + \mathbf{LC})\hat{\mathbf{x}}(t) + \mathbf{B}\mathbf{u}(t) - \mathbf{L}\mathbf{y}(t)$$

b) l'evoluzione temporale dell'errore di stima $\mathbf{e}(t) = \mathbf{x}(t) - \hat{\mathbf{x}}(t)$ che si ha a partire da un'errore di stima iniziale $\mathbf{e}(0)$:

$$\mathbf{e}(t) = e^{(\mathbf{A} + \mathbf{LC})t} \, \mathbf{e}(0)$$

15. Scrivere come si determina la matrice \mathbf{P}^{-1} della trasformazione $\mathbf{x} = \mathbf{P}\overline{\mathbf{x}}$ che potra un sistema non completamente osservabile in forma standard di osservabilità:

$$\mathbf{P}^{\text{-}1} = \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \end{bmatrix}$$
 dove $\operatorname{Im} \mathbf{P}_1^{\text{\tiny T}} = \operatorname{Im} (\mathcal{O}^{-})^{\text{\tiny T}}$ e \mathbf{P}_2 rende non singulare la matrice $\mathbf{P}^{\text{-}1}$.

Indicare inoltre la struttura a blocchi delle matrici $\overline{\bf A},\,\overline{\bf B}$ e $\overline{\bf C}$ che si ottengono:

$$\overline{\mathbf{A}} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix} \qquad \overline{\mathbf{B}} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix}$$

$$\overline{\mathbf{C}} = \begin{bmatrix} \mathbf{C}_1 & 0 \end{bmatrix}$$

16. Relativamente al sistema lineare discreto $\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k)$, $\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k)$, scrivere in termini delle matrici \mathbf{A} , \mathbf{B} e \mathbf{C} una condizione necessaria e sufficiente per la completa ricostruibilità del sistema:

$$\mathcal{E}^- = \ker \left[egin{array}{c} \mathbf{C} \ \mathbf{C} \mathbf{A} \ dots \ \mathbf{C} \mathbf{A}^{n-1} \end{array}
ight] \subseteq \ker \mathbf{A}^n$$

17. Enunciare il criterio diretto di stabilità di Lyapunov nel caso di sistemi tempo continui.

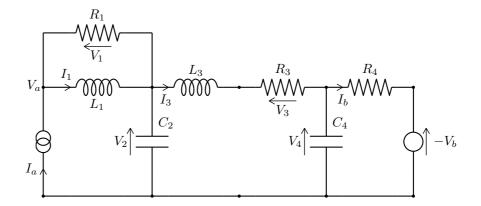
Si consideri il sistema non lineare $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}_0)$ e sia \mathbf{x}_0 un punto di equilibrio corrispondente all'ingresso costante \mathbf{u}_0 .

- 1) Se in un intorno W di \mathbf{x}_0 <u>esiste</u> una funzione $V(\mathbf{x}): W \to \mathcal{R}$ definita positiva con derivate prime continue e se $\dot{V}(\mathbf{x})$ è semidefinita negativa, allora il punto \mathbf{x}_0 è stabile per il sistema non lineare.
- 2) Se inoltre $\dot{V}(\mathbf{x})$ è definita negativa, allora l'origine è asintoticamente stabile.
- 18. Sia dato il seguente sistema lineare tempo-continuo $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$, $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$. Scrivere l'espressione delle matrici \mathbf{F} , \mathbf{G} e \mathbf{H} che caratterizzano il corrispondente sistema a segnali campionati $\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{G}\mathbf{u}(k)$, $\mathbf{y}(k) = \mathbf{H}\mathbf{x}(k)$:

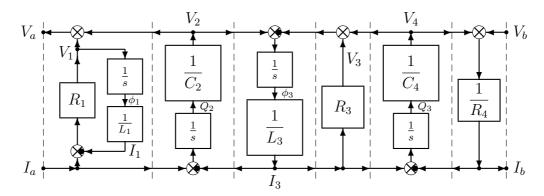
$$\mathbf{F} = e^{\mathbf{A}T}, \qquad \mathbf{G} = \int_0^T e^{\mathbf{A}\sigma} \mathbf{B} \, d\sigma, \qquad \mathbf{H} = \mathbf{C}$$

19. Si consideri il seguente circuito elettrico costituito dalle induttanze L_1 , L_3 , dalle capacità C_2 , C_3 e dalle resistenze R_1 , R_3 e R_4 . Sul sistema agiscono due ingressi: la corrente I_a e la tensione V_b . Le uscite del sistema sono: la tensione V_a e la corrente I_b .

3



Il modello P.O.G. del circuito elettrico assegnato è il seguente:



Sia $\mathbf{x} = \begin{bmatrix} I_1 & V_2 & I_3 & V_4 \end{bmatrix}^{\mathrm{T}}$ il vettore di stato, $\mathbf{u} = \begin{bmatrix} I_a & V_b \end{bmatrix}^{\mathrm{T}}$ il vettore degli ingressi e $\mathbf{y} = \begin{bmatrix} V_a & I_b \end{bmatrix}^{\mathrm{T}}$ il vettore delle uscite. Scrivere il corrispondente sistema dinamico $\overline{\mathbf{L}}\dot{\mathbf{x}} = \overline{\mathbf{A}}\mathbf{x} + \overline{\mathbf{B}}\mathbf{u}$ e $\mathbf{y} = \overline{\mathbf{C}}\mathbf{x} + \overline{\mathbf{D}}\mathbf{u}$ nello spazio degli stati:

$$\begin{bmatrix}
L_{1} & 0 & 0 & 0 \\
0 & C_{2} & 0 & 0 \\
0 & 0 & L_{3} & 0 \\
0 & 0 & 0 & C_{4}
\end{bmatrix}
\underbrace{\begin{bmatrix}
\dot{I}_{1} \\
\dot{V}_{2} \\
\dot{I}_{3} \\
\dot{X}
\end{bmatrix}}_{\dot{X}} = \underbrace{\begin{bmatrix}
-R_{1} & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & -R_{3} & -1 \\
0 & 0 & 1 & -\frac{1}{R_{4}}
\end{bmatrix}}_{\dot{X}} \underbrace{\begin{bmatrix}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{bmatrix}}_{\dot{X}} + \underbrace{\begin{bmatrix}
R_{1} & 0 \\
1 & 0 \\
0 & 0 \\
0 & -\frac{1}{R_{4}}
\end{bmatrix}}_{\dot{X}} \underbrace{\begin{bmatrix}
I_{a} \\
V_{b}
\end{bmatrix}}_{\dot{X}}$$

$$\underbrace{\begin{bmatrix}
V_{a} \\
I_{b}
\end{bmatrix}}_{\dot{Y}} = \underbrace{\begin{bmatrix}
-R_{1} & 1 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{R_{4}}
\end{bmatrix}}_{\dot{C}} \mathbf{x} + \underbrace{\begin{bmatrix}
R_{1} & 0 \\
0 & \frac{1}{R_{4}}
\end{bmatrix}}_{\dot{D}} \underbrace{\begin{bmatrix}
I_{a} \\
V_{b}
\end{bmatrix}}_{\dot{U}}$$

20. Scrivere all'interno della seguente tabella i simboli e i nomi delle variabili energia e delle variabili di potenza che caratterizzano l'ambito energetico *Meccanico Rotazionale*. Indicare inoltre la relazione costitutiva dei singoli elementi (sia nel caso generale non lineare che nel

caso lineare) e l'equazione differenziale che caratterizza gli elementi dinamici:

		Simboli	Rel. Costititutiva	Caso Lineare	Eq. Differenzile
\mathcal{D}_1	J	Inerzia			I D
q_1	P	momento ang.	$P = \Phi_J(\omega)$	$P = J \omega$	$\frac{dP}{dt} = \tau$
v_1	ω	velocità ang.			w.
\mathcal{D}_2	E	Elasticità tors.			1.0
q_2	θ	spostamento ang.	$ heta = \Phi_E(au)$	$\theta = E \tau$	$\frac{d\theta}{dt} = \omega$
v_2	τ	coppia			
\mathcal{R}	b	Dissipatore	$\tau = \Phi_b(\omega)$	$\tau = b\omega$	

21. Sia dato il seguente sistema non-lineare, tempo-continuo, privo di ingressi:

$$\begin{cases} \dot{x}_1 = -x_1^3 - x_2^4 \\ \dot{x}_2 = (x_1 + \alpha)x_2 - x_2^3 \end{cases}$$

È facile verificare che il punto $(x_1, x_2) = (0, 0)$ è un punto di equilibrio per il sistema.

a) Linearizzare il sistema nell'intorno del punto $(x_1, x_2) = (0, 0)$ calcolando la matrice **A** del corrispondente sistema linearizzato:

La matrice A del sistema linearizzato ha la seguente struttura:

$$\mathbf{A} = \begin{bmatrix} -3x_1^2 & -4x_2^3 \\ x_2 & \alpha + x_1 - 3x_2^2 \end{bmatrix}_{(x_1 = 0, x_2 = 0)} = \begin{bmatrix} 0 & 0 \\ 0 & \alpha \end{bmatrix}$$

b) Studiare, al variare del parametro α , la stabilità del sistema non lineare nell'intorno del punto $(x_1, x_2) = (0, 0)$ utilizzando il criterio ridotto di Lyapunov:

Il polinomio caratteristico della matrice A è il seguente:

$$\Delta_{\mathbf{A}}(s) = s(s - \alpha) = 0$$

In base al criterio ridotto di Lyapunov si può affermare che: 1) per $\alpha > 0$ il sistema non lineare è instabile nell'intorno dell'origine; 2) per $\alpha \leq 0$ il criterio non implica nulla.

c) Nel caso $\alpha=0$, studiare la stabilità del sistema non lineare nell'intorno dell'origine utilizzando il criterio "diretto" di Lyapunov e la seguente funzione definita positiva: $V(\mathbf{x})=x_1^2+\frac{1}{2}x_2^4$.

Se si calcola la derivata della funzione $V(\mathbf{x})$ lungo le traiettorie del sistema si ottiene:

$$\dot{V} = 2x_1(-x_1^3 - x_2^4) + 2x_2^3(x_1x_2 - x_2^3) = -2x_1^4 - 2x_2^6 < 0$$

Applicando il criterio "diretto" di Lyapunov è possibile affermare che nell'intorno $\mathbf{x}_0 = 0$ il sistema non lineare è asintoticamente stabile.

d) Si utilizzi il parametro α come ingresso del sistema: $u = \alpha$. Calcolare il controllo equivalente $u_{eq}(t)$ in grado di mantenere lo stato del sistema sulla superficie di sliding $\sigma = x_1 + x_2 = 0$.

Sol. Il controllo equivalente u_{eq} si determina imponendo $\dot{\sigma} = 0$:

$$\dot{\sigma} = \dot{x}_1 + \dot{x}_2 = 0, \rightarrow -x_1^3 - x_2^4 + (x_1 + u_{eq})x_2 - x_2^3 = 0 \rightarrow u_{eq} = \frac{x_1^3 + x_2^4 + x_2^3}{x_2} - x_1$$

22. Come è possibile calcolare la matrice di transizione dello stato \mathbf{A}^k di un sistema discreto lineare stazionario utilizzando le trasformate Zeta?

$$\mathbf{A}^k = \mathcal{Z}^{\text{-1}}[z(z\mathbf{I} - \mathbf{A})^{-1}]$$

23. Supponendo che la coppia di matrici (\mathbf{A} , \mathbf{c}) sia osservabile e utilizzando la formula duale di Ackerman, scrivere il vettore dei guadagni \mathbf{l} di un osservatore asintotico dello stato che posiziona in $\lambda = -3$ tutti gli n autovalori della matrice $\mathbf{A} + \mathbf{l}\mathbf{c}$:

$$\mathbf{l} = -p(\mathbf{A}) \left(\mathcal{O}^{-} \right)^{-1} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} = -p(\mathbf{A})\mathbf{q} \qquad p(\lambda) = (\lambda + 3)^{n}$$

dove \mathbf{q} è l'ultima colonna dell'inversa della matrice di osservabilità e dove $p(\mathbf{A})$ è la matrice che si ottiene dal polinomio arbitrario $p(\lambda)$ sostituendo in esso la matrice \mathbf{A} al posto del parametro λ : $p(\mathbf{A}) = (\mathbf{A} + 3\mathbf{I})^n$.

24. Quali delle seguenti espressioni rappresentano modelli di regressione lineari nei parametri a_i :

$$y = a_1 x_1 + a_2 x_2 + 2a_1 a_2 x_3$$

$$y = a_1 \cos(x_1) + a_2 \cos(x_1 + x_2)$$

$$y = a_1 x_1 + 2\cos(a_2 x_2)$$

$$xigma y = a_1 x_1 + a_2 e^{-3x_2}$$

25. Sia dato il seguente sistema lineare tempo-invariante:

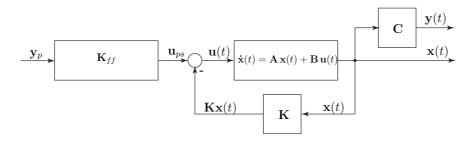
$$\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t),$$
 $\mathbf{x}(t_0) = \mathbf{x}_0$
 $\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$

Volendo realizzare un controllore ottimo LQ, per l'inseguimento di un set-point \mathbf{y}_p diverso dall'origine, l'espressione dell'indice di comportamento J risulta essere:

$$J = \frac{1}{2} \int_{t_0}^{\infty} \left\{ [\mathbf{y}(t) - \mathbf{y}_p]^T \mathbf{Q} [\mathbf{y}(t) - \mathbf{y}_p] + [\mathbf{u}(t) - \mathbf{u}_p]^T \mathbf{R} [\mathbf{u}(t) - \mathbf{u}_p] \right\} dt$$

con
$$\mathbf{Q} = \mathbf{Q}^T \ge 0$$
, $\mathbf{Q} \in \mathbb{R}^{m \times m}$ e $\mathbf{R} = \mathbf{R}^T > 0$, $\mathbf{R} \in \mathbb{R}^{r \times r}$.

Inoltre lo schema di controllo complessivo (retroazione ottima dello stato e aggiunta di un riferimento)



dove: $\mathbf{K}_{ff} = -[\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}]^{-1}$.