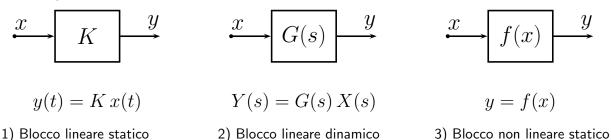
0.0.

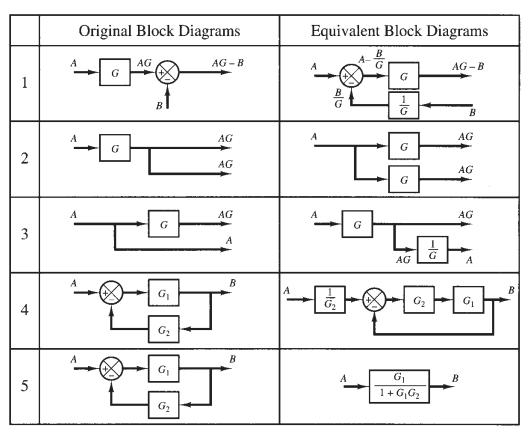
Riduzione degli schemi a blocchi

• I sistemi complessi vengono spesso rappresentati graficamente mediante $schemi\ a\ blocchi$ ottenuti dalla connessione serie/parallelo di singoli elementi orientati che rappresentano le funzionalità (statiche, dinamiche, lineari, non lineari, ecc.) dei singoli elementi fisici che compongono il sistema.

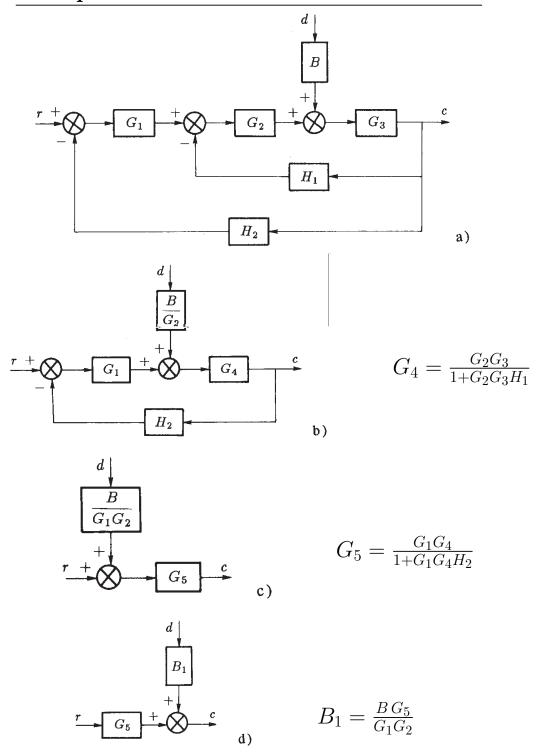


• Negli schemi a blocchi i singoli elementi orientati sono collegati fra di loro mediante "punti di diramazione" e "giunzioni sommanti":

• Principali regole per la riduzione degli schemi a blocchi:



Esempio di riduzione di schema a blocchi



• Forma minima:

$$c = \frac{G_1 G_2 G_3 r + B G_3 d}{1 + G_2 G_3 H_1 + G_1 G_2 G_3 H_2}$$

La formula di Mason

• Dato uno schema a blocchi, un ingresso X e un'uscita Y, la formula di Mason permette di calcolare in modo semplice e diretto il $coefficiente\ di$ $trasmittanza\ G=\frac{Y}{X}$ (ovvero la $funzione\ di\ trasferimento$) che lega l'ingresso X all'uscita Y:

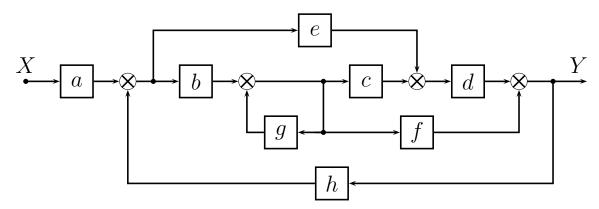
$$G = \frac{Y}{X} = \frac{1}{\Delta} \sum_{i \in \mathcal{P}} P_i \, \Delta_i$$

- \mathcal{P} è l'insieme degli indici di tutti i percorsi distinti che collegano l'ingresso X all'uscita Y. P_i è il coefficiente dell'i-esimo percorso, cioè il prodotto dei coefficienti di tutti i rami che compongono il percorso. Δ è il determinante dell'intero schema a blocchi. Δ_i è il determinante dello schema a blocchi parziale che si ottiene eliminando dallo schema tutti gli elementi appartenenti al percorso i-esimo.
- Il determinante Δ di uno schema a blocchi si calcola nel modo seguente:

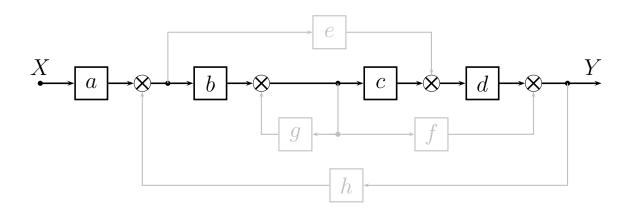
$$\Delta := 1 - \sum_{i \in \mathcal{J}_1} A_i + \sum_{(i,j) \in \mathcal{J}_2} A_i A_j - \sum_{(i,j,k) \in \mathcal{J}_3} A_i A_j A_k + \dots$$

dove A_i è il coefficiente dell'*i*-esimo anello, \mathcal{J}_1 è l'insieme degli indici di tutti gli anelli dello schema a blocchi, \mathcal{J}_2 è l'insieme degli indici di tutte le coppie di anelli che non si toccano 2 a 2, ..., \mathcal{J}_n è l'insieme degli indici di tutte le n-ple di anelli che non si toccano n ad n.

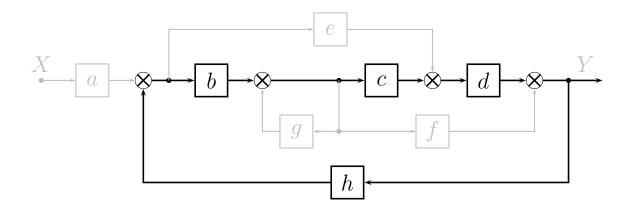
• Esempio. Dato il seguente schema a blocchi, calcolare la funzione di trasferimento $G = \frac{Y}{X}$ che lega la variabile di ingresso X alla variabile di uscita Y:



• Un <u>percorso</u> è una successione di rami e di nodi adiacenti senza anelli in cui ogni elemento viene attraversato una sola volta. Il <u>coefficiente</u> P del percorso è il prodotto dei guadagni dei rami che lo compongono. Esempio: il coefficiente P_1 del percorso evidenziato in figura è $P_1 = abcd$.



• Un <u>anello</u> è un percorso chiuso. Il <u>coefficiente</u> A dell'anello è il prodotto dei guadagni dei rami che lo compongono. Esempio: il coefficiente A_2 dell'anello evidenziato in figura è $A_2 = bcdh$.



- ullet Due percorsi o due anelli $\underline{\mathrm{non}\ \mathrm{si}\ \mathrm{toccano}}$ quando non hanno nessun punti in comune.
- Per calcolare il determinante Δ di uno schema a blocchi è necessario calcolare gli insiemi \mathcal{P} , \mathcal{J}_1 , \mathcal{J}_2 , ecc.
- L'insieme $\mathcal{P} = \{1, 2, 3\}$ è l'insieme degli indici di tutti i percorsi dello schema a blocchi che collegano la variabile di ingresso X alla variabile di uscita Y. Ad ogni indice i si associa il coefficiente P_i del corrispondente percorso:

$$P_1 = abcd$$
, $P_2 = aed$, $P_3 = abf$.

• L'insieme $\mathcal{J}_1 = \{1, 2, 3, 4\}$ è l'insieme degli indici di tutti gli anelli dello schema a blocchi. Ad ogni indice i si associa il coefficiente A_i del corrispondente anello:

$$A_1 = edh$$
, $A_2 = bcdh$, $A_3 = bfh$, $A_4 = g$.

• L'insieme $\mathcal{J}_2 = \{(1,4)\}$ è l'insieme delle COPPIE di indici degli anelli dello schema a blocchi che NON si toccano a due a due:

$$\mathcal{J}_2 = \{(1,4)\}.$$

• L'insieme $\mathcal{J}_n = \{ \}$ per $n \in [3, 4, \ldots]$ è l'insieme delle n-PLE di indici degli anelli dello schema a blocchi che NON si toccano a n a n:

$$\mathcal{J}_3 = \mathcal{J}_4 = \dots = \mathcal{J}_n = \{ \}.$$

• Calcolati gli insiemi \mathcal{J}_1 , \mathcal{J}_2 , ..., \mathcal{J}_n e i coefficienti A_i di tutti gli anelli, il determinante Δ dello schema a blocchi si calcola utilizzando la formula:

$$\Delta \stackrel{def}{=} 1 - \sum_{i \in \mathcal{J}_1} A_i + \sum_{(i,j) \in \mathcal{J}_2} A_i A_j - \sum_{(i,j,k) \in \mathcal{J}_3} A_i A_j A_k + \dots$$

Per il caso in esame si ha che:

$$\sum_{i \in \mathcal{J}_1} A_i = edh + bcdh + bfh + g, \qquad \sum_{(i,j) \in \mathcal{J}_2} A_i A_j = edhg$$

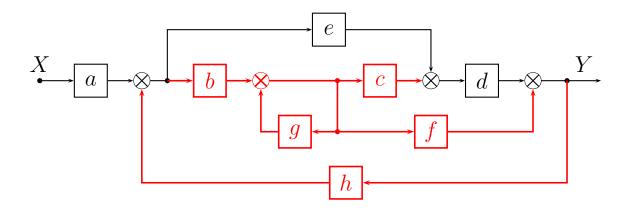
per cui il determinante dello schema a blocchi è:

$$\Delta = 1 - edh - bcdh - bfh - g + edhg.$$

Osservazioni:

- Il determinante di uno schema a blocchi dipende SOLO dagli anelli presenti all'interno dello schema e non dalle variabili di ingresso e di uscita.
- Tutte le funzioni di trasferimento che compongono uno schema a blocchi in forma minima sono caratterizzate dallo stesso determinante Δ .
- I determinanti Δ_i degli schemi a blocchi parziali associati ai percorsi P_i si calcolano nello stesso modo del determinate Δ .

• Lo schema a blocchi parziale associato al percorso $P_2 = aed$, per esempio, si determina eliminando tutti i nodi e tutti i rami che appartengono al percorso P_2 . Nel caso in esame si ha: $\Delta_2 = 1 - g$.



• Nel caso in esame, i determinanti Δ_i degli schemi a blocchi parziali associati ai percorsi P_i sono i seguenti:

$$\Delta_1 = 1, \qquad \Delta_2 = 1 - g, \qquad \Delta_3 = 1.$$

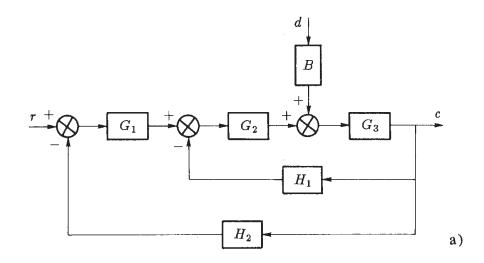
• Il numeratore della formula di Mason è quindi il seguente:

$$\sum_{i \in \mathcal{P}} P_i \Delta_i = abcd(1) + aed(1-g) + abf(1)$$

 \bullet La funzione di trasferimento $G(s)=\frac{Y(s)}{X(s)}$ che collega l'ingresso X all'uscita Y è quindi la seguente:

$$G(s) = \frac{abcd + aed(1-g) + abf}{1 - edh - bcdh - bfh - g + edhg}$$

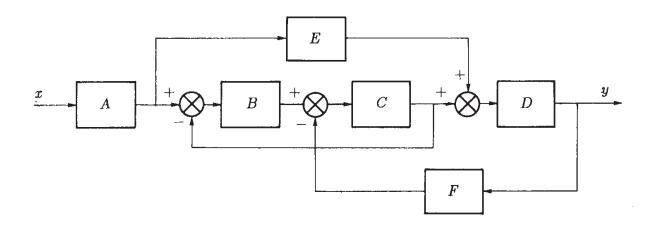
• Esempio 1:



Forma minima:

$$c = \frac{G_1 G_2 G_3 r + B G_3 d}{1 + G_2 G_3 H_1 + G_1 G_2 G_3 H_2}$$

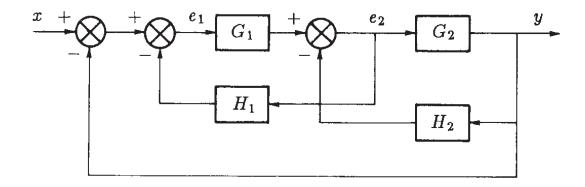
• Esempio 2:



• Funzione di trasferimento:

$$\frac{y}{x} = \frac{A\,D\,B\,C + A\,D\,E\,(1 + B\,C)}{1 + B\,C + C\,D\,F}$$

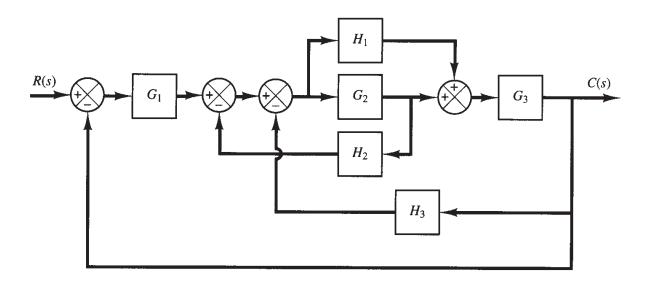
• Esempio 3:



• Funzione di trasferimento:

$$\frac{y}{x} = \frac{G_1 G_2}{1 + G_1 H_1 + G_2 H_2 + G_1 G_2}$$

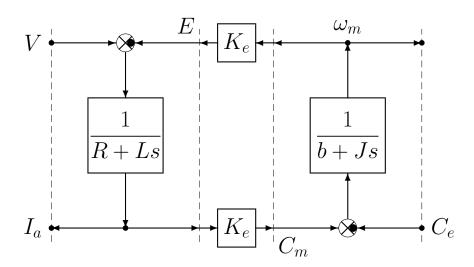
• Esempio 4:



• Funzione di trasferimento:

$$\frac{C(s)}{R(s)} = \frac{G_1 G_2 G_3 + G_1 H_1 G_3}{1 + G_1 G_2 G_3 + G_1 H_1 G_3 + G_2 H_2 + G_2 G_3 H_3 + H_1 G_3 H_3}$$

• Esempio 5. Schema a blocchi di un motore in corrente continua:



ullet Il legame "in forma minima" tra la variabile di uscita $\omega_m(s)$ e le variabili di ingresso V(s) e $C_e(s)$ è il seguente:

$$\omega_m(s) = G_1(s) V(s) + G_2(s) C_e(s)$$

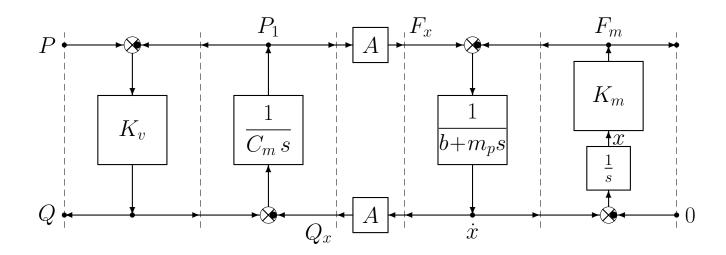
dove $G_1(s)$ lega l'ingresso di controllo V(s) all'uscita $\omega_m(s)$

$$G_1(s) = \frac{\omega_m(s)}{V(s)} = \frac{\frac{K_e}{(R+L\,s)(b+J\,s)}}{1 + \frac{K_e^2}{(R+L\,s)(b+J\,s)}} = \frac{K_e}{(R+L\,s)(b+J\,s) + K_e^2}$$

mentre $G_2(s)$ lega l'ingresso di disturbo $C_e(s)$ all'uscita $\omega_m(s)$:

$$G_2(s) = \frac{\omega_m(s)}{C_e(s)} = \frac{-\frac{1}{(b+Js)}}{1 + \frac{K_e^2}{(R+Ls)(b+Js)}} = \frac{-(R+Ls)}{(R+Ls)(b+Js) + K_e^2}$$

• Esempio 5. Schema a blocchi di una frizione idraulica:



Utilizzando la formula di Mason e le seguenti variabili ausiliarie

$$G_1 = K_v,$$
 $G_2 = \frac{1}{C_m s},$ $G_3 = \frac{1}{b + m_p s},$ $G_4 = \frac{K_m}{s}$

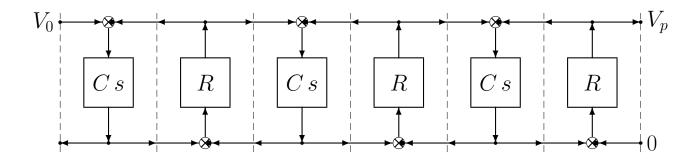
si ottiene la funzione di trasferimento G(s) del sistema:

$$G(s) = \frac{F_m(s)}{P(s)} = \frac{A G_1 G_2 G_3 G_4}{1 + G_1 G_2 + A^2 G_2 G_3 + G_3 G_4 + G_1 G_2 G_3 G_4}$$

che sostituendo diventa:

$$G(s) = \frac{AK_mK_v}{C_m m_p s^3 + (C_m b + K_v m_p) s^2 + (A^2 + C_m K_m + K_v b) s + K_m K_v}$$

• Esempio 6. Si consideri il seguente schema a blocchi:

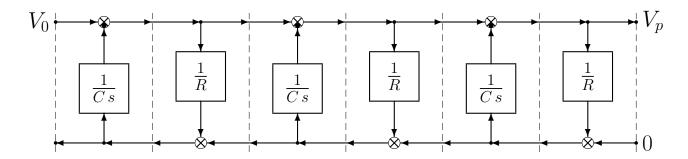


La funzione di trasferimento G(s) che lega l'ingresso $V_0(s)$ all'uscita $V_p(s)$ si calcola agilmente utilizzando la formula di Mason:

$$G(s) = \frac{V_p(s)}{V_0(s)} = \frac{R^3 C^3 s^3}{1 + 5 R C s + 6 R^2 C^2 s^2 + R^3 C^3 s^3}$$

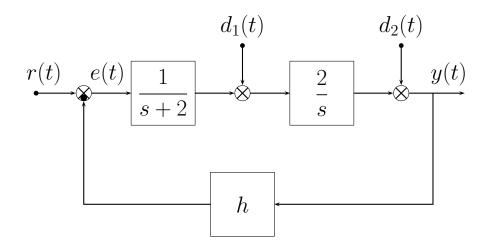
Infatti, all'interno dello schema a blocchi ci sono 5 anelli distinti, tutti aventi guadagno di anello $-R\,C\,s$. Inoltre ci sono 6 coppie di anelli che non si toccano a due a due, e una terna di anelli che non si toccano a tre a tre. L'unico percorso che parte da V_0 e arriva a V_p attraversa tutti i blocchi.

Il precedente schema a blocchi (non fisicamente realizzabile) é equivalente al seguente schema a blocchi fisicamente realizzabile:



Se si applica la formula di Mason a questo schema si ottiene la stessa funzione di trasferimento G(s) che si é ottenuta applicando la formula di Mason al precedente schema.

• Esempio 7. Sia dato il seguente sistema dinamico retroazionato:



ullet Calcolare il valore a regime della variabile e(t) in presenza dei seguenti segnali: r(t)=t, $d_1(t)=1$ e $d_2(t)=1$.

Si opera con le trasformate di Laplace e si applica la sovrapposizione degli effetti:

$$E(s) = \frac{R(s) - \frac{2h}{s}D_1(s) - hD_2(s)}{1 + \frac{2h}{s(s+2)}}$$

$$= \frac{s(s+2)R(s) - 2h(s+2)D_1(s) - hs(s+2)D_2(s)}{s^2 + 2s + 2h}$$

Essendo $R(s) = \frac{1}{s^2}$ e $D_1(s) = D_2(s) = \frac{1}{s}$, si ha che:

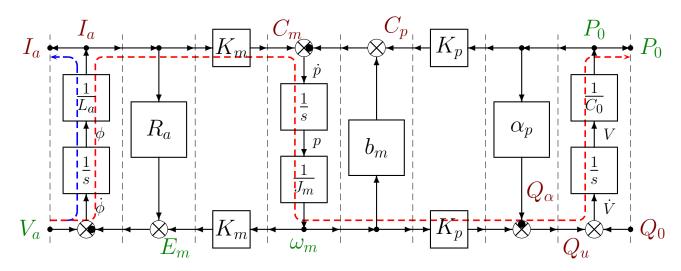
$$E(s) = \frac{(s+2) - 2h(s+2) - hs(s+2)}{s(s^2 + 2s + 2h)} = \frac{(s+2)(1 - 2h - hs)}{s(s^2 + 2s + 2h)}$$

Applicando il teorema del valore finale si ricava:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \frac{1 - 2h}{h} = \frac{1}{h} - 2$$

Grado relativo di una funzione di trasferimento G(s)

• Si consideri un generico schema a blocchi:



- ullet Per ogni funzione di trasferimento $G(s)=rac{Y(s)}{U(s)}$ che lega l'ingresso u(t) all'uscita y(t), valgono le seguenti proprietá:
 - 1) l'ordine della funzione G(s) é uguale al numero n di elementi dinamici indipendenti che all'interno del sistema sono in grado di immagazzinare energia al proprio interno;
 - 2) i poli della funzione G(s) sono uguali alla soluzioni dell'equazione $\Delta(s)=0$ dove $\Delta(s)$ é il determinante dello schema a blocchi;
 - 3) il grado relativo della funzione G(s) é uguale al minimo numero r di integratori presenti in tutti i percorsi che collegano l'ingresso u(t) all'uscita y(t);
 - 4) se esiste un solo percorso \mathcal{P}_1 che lega l'ingresso u(t) all'uscita y(t), allora gli zeri della funzione G(s) sono uguali alle soluzioni dell'equazione $\Delta_1(s)=0$ dove $\Delta_1(s)$ é il determinante dello schema a blocchi ridotto che si ottiene eliminando tutti gli elementi dello schema a blocchi che toccano il percorso \mathcal{P}_1 ;
 - $G(s)=rac{P_0}{V_a}$ ha 3 poli e 0 zeri perché il grado relativo é r=3; $G(s)=rac{I_a}{V_a}$ ha 3 poli e 2 zeri perché il grado relativo é r=1;
- Nota: il grado relativo é proporzionale alla difficoltá del controllo.