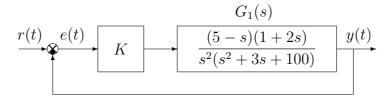
Controlli Automatici B 14 Giugno 2011- Esercizi

Nome:
Nr. Mat.
Firma:

Si risponda alle seguenti domande.

a1) Sia dato il seguente sistema retroazionato:



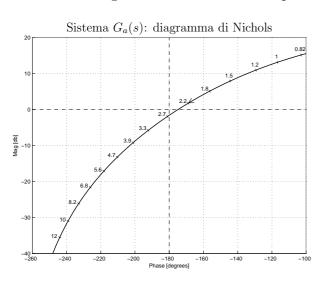
Tracciare qualitativamente il luogo delle radici del sistema retroazionato al variare del parametro K. Tracciare il luogo delle radici sia per K > 0 che per K < 0. Determinare esattamente la posizione degli asintoti, le intersezioni ω^* con l'asse immaginario e i corrispondenti valori del guadagno K^* . Determinare la posizione dei punti di diramazione "solo in modo qualitativo".

a.2) Si consideri la seguente equazione caratteristica di un motore elettrico in corrente continua:

$$(R + L s)(b + J s) + K_e^2 = 0.$$

Posto $L = J = K_e = 1$ e b = 2, mostrare graficamente come si muovono sul piano complesso le radici dell'equazione caratteristica al variare del parametro R > 0. Determinare esattamente la posizione dei punti di diramazione. Calcolare il valore R^* a cui corrisponde il minimo tempo di assestamento del sistema dinamico considerato.

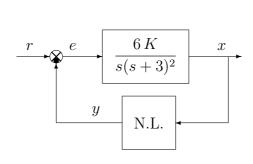
b) Siano date le seguenti due funzioni di risposta armonica dei sistemi $G_a(s)$ e $G_b(s)$:

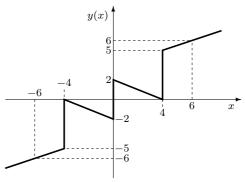




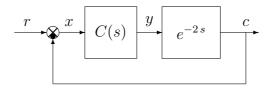
- b.1) Per il sistema $G_a(s)$, progettare una rete ritardatrice in modo che la funzione di risposta armonica del sistema compensato passi per il punto $B = (-160^{\circ}, -10 \text{ db})$. Scegliere il valore della pulsazione ω che si ritiene più opportuno.
- b.2) Per il sistema $G_b(s)$ progettare una rete correttrice in modo da garantire al sistema compensato un margine di ampiezza $M_{\alpha} = 5$. Scegliere il valore della pulsazione ω che si ritiene più opportuno.
- b.3) Sempre per il sistema $G_b(s)$ progettare i parametri K, τ_1 e τ_2 di una rete anticipatrice $C(s) = K \frac{1 + \tau_1 s}{1 + \tau_2 s}$ in modo da garantire al sistema compensato un margine di fase $M_{\varphi} = 60^{\circ}$ in corrispondenza della pulsazione $\omega_A = 4.7$.

c) Si consideri il seguente sistema non lineare retroazionato:





- c.1) Posto K = 1, determinare per quali valori r_0 ed r_1 dell'ingresso r i punti di lavoro del sistema retroazionato sono posizionati in $(x_0, y_0) = (0, 0)$ e in $(x_1, y_1) = (6, 6)$.
- c.2) Posto K = 1 ed utilizzando il criterio del cerchio, dire se il sistema retroazionato è stabile o meno nell'intorno del punto $(x_1, y_1) = (6, 6)$.
- c.3) Disegnare in modo qualitativo l'andamento della funzione descrittiva F(X) della non linearità y(x) nell'intorno del punto (0, 0). Utilizzare delle variabili (per esempio: m_1, m_2, \ldots) per rappresentare gli eventuali valori non noti minimi e massimi della funzione F(X).
- c.4) Discutere "qualitativamente" (in funzione anche dei parametri m_1, m_2, \ldots) l'esistenza o meno di cicli limite nel sistema retroazionato al variare del guadagno K > 0.
- c.5) Posto K = 1, calcolare l'ampiezza X^* e la pulsazione ω^* del più piccolo ciclo limite stabile presente nel sistema retroazionato.
- d) Sia dato il seguente sistema retroazionato:



Progettare il regolatore C(s) in modo che il sistema retroazionato abbia un errore a regime nullo per ingresso a gradino e un margine di ampiezza $M_{\alpha} = 5$.

e) Utilizzando il metodo della trasformazione bilineare, discretizzare la seguente rete correttrice

$$D(s) = \frac{M(s)}{E(s)} = \frac{s+2}{1+2s}$$

giungendo anche alla determinazione della corrispondente equazione alle differenze. Si utilizzi il periodo di campionamento T=0.1.

f) Partendo da condizioni iniziali nulle, calcolare la risposta del seguente sistema dinamico discreto:

$$y(n+1) - y(n) = x(n)$$

quando in ingresso è presente il segnale $x(n) = 0.5^n$.

g) Sia $x(t) = 2\sin(3t)$ un segnale periodico posto in ingresso ad un elemento non lineare N.L. caratterizzato da una funzione descrittiva $F(X) = \frac{2}{\pi X}$. Indicare qual è l'andamento temporale $y_1(t)$ della fondamentale del segnale periodico che si ha all'uscita del blocco non lineare:

2

$$x(t) = 2 \sin(3t)$$

$$F(X) = \frac{2}{\pi X}$$

$$y_1(t) = \dots$$

Controlli Automatici B 14 Giugno 2011- Domande Teoriche

Nome:	
Nr. Mat.	
Firma:	

Rispondere alle domande e ai test che seguono. Per ciascuno dei test segnare con una crocetta le affermazioni che si ritengono giuste. La risposta al test è considerata corretta solo se tutte le affermazioni corrette sono state contrassegnate.

1. La \mathcal{Z} -trasformata X(z) della sequenza x(kT) è definita nel seguente modo:

$$X(z) =$$

2. Calcolare la \mathcal{Z} -trasformata X(z) dei seguenti segnali x(n):

$$x(n) = (-1)^n \quad \to \quad X(z) =$$

$$x(n) = 2n \longrightarrow X(z) =$$

3. Il sistema dinamico discreto $G(z)=\frac{1}{z^2(z-1)}$

- è asintoticamente stabile
- () è semplicemente stabile () è instabile

4. Indicare quale dei seguenti sistemi discreti G(z) ha la risposta impulsiva g(k) che tende a zero più lentamente:

$$\bigcirc G(z) = \frac{1}{z(z-0.4)^2}$$

$$\bigcap G(z) = \frac{1}{(z^2 - 0.6^2)}$$

$$\bigcirc G(z) = \frac{1}{z^2(z+0.8)}$$

$$\bigcirc G(z) = \frac{1}{(z-2)(z+0.9)}$$

5. Il valore a regime $x(\infty) = \lim_{k \to \infty} x(k)$ della sequenza x(k) corrispondente alla funzione discreta $X(z) = \frac{z-2}{z-1}$

$$\bigcirc$$
 è nullo $x(\infty) = 0$

$$\bigcirc$$
 è finito e vale $x(\infty) = -1$

$$\bigcirc$$
 è finito e vale $x(\infty) = 1$

$$\bigcirc$$
 è infinito: $x(\infty) = \infty$

6. Sul piano z i luoghi dei punti a decadimento costante

- ono rette uscenti dall'origine
- ono circonferenze centrate nell'origine
- O sono tratti di spirali decrescenti verso l'origine

7. Calcolare la funzione di trasferimento $G(z) = \frac{Y(z)}{X(z)}$ corrispondente alla seguenti equazioni alle differenze:

$$y_k = -3y_{k-1} + 2y_{k-2} + 5x_{k-1} + 7x_{k-2}$$
 \rightarrow $G(z) =$

8. La funzione descrittiva F(X) di una funzione lineare y = Kx di pendenza K è

- O una funzione monotona decrescente
- O una funzione costante
- O una funzione monotona crescente
- nessuna delle precedenti

9. Per poter applicare il criterio del cerchio, la caratteristica non lineare y(x) deve:

- o essere simmetrica rispetto all'origine
- o essere ad un sol valore
- o essere contenuta nel I e nel III quadrante
- o passare per l'origine

10. In corrispondenza di una radice multipla di ordine h il luogo delle radici

- \bigcirc presenta h rami entranti
- \bigcirc presenta h rami uscenti
- O le tangenti ai rami entranti dividono il piano in settori uguali
- O le tangenti ai rami uscenti dividono il piano in settori uguali

11. Sia dato il sistema dinamico $G(s) = \frac{(s+2)}{(s+2)^2+1^2}$.

- 4.1) Disegnare il luogo delle radici del sistema G(s) al variare del parametro K < 0.
- 4.2) Calcolare l'ascissa σ_0 corrispondente ad un eventuale punto di diramazione:

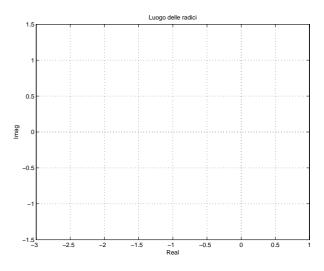
$$\sigma_0 =$$

4.3) Calcolare il valore K_0 corrispondente al punto di diramazione σ_0 :

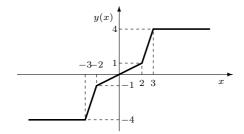
$$K_0 =$$

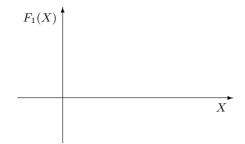
4.4) Calcolare il valore K^* corrispondente all'intersezione del luogo con l'asse immaginario:

$$K^* =$$

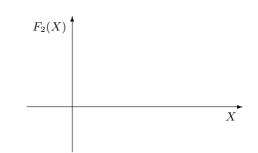


12. Date le seguenti caratteristiche non lineari simmetriche rispetto all'origine, determinare "qualitativamente" gli andamenti delle corrispondenti funzioni descrittive $F_1(X)$ ed $F_2(X)$:









13. La rete ritardatrice $G(s) = \frac{1+\alpha \tau s}{1+\tau s}$ presenta in massimo ritardo per

- $\bigcirc \omega_m = \frac{1}{\tau \sqrt{\alpha}} \qquad \qquad \bigcirc \omega_m = \frac{1}{\alpha \sqrt{\tau}} \qquad \qquad \bigcirc \omega_m = \frac{\sigma}{\sqrt{\alpha}}$