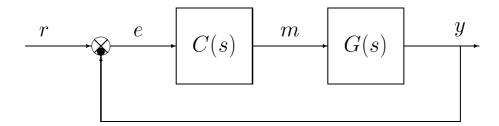
Sintesi di reti correttrici: formule di inversione

• Si consideri il seguente sistema retroazionato:



dove G(s) è il sistema da controllare e C(s) è un'opportuna rete correttrice aventi la seguente struttura:

$$C(s) = \frac{1 + \tau_1 s}{1 + \tau_2 s}$$

ullet Si ha una rete anticipatrice quando $au_1 > au_2$:

$$C(s) = rac{1+ au s}{1+lpha au s}$$
 dove $au = au_1, \ lpha = rac{ au_2}{ au_1} < 1$

• Si ha una rete <u>ritardatrice</u> quando $\tau_1 < \tau_2$:

$$C(s) = rac{1 + lpha au s}{1 + au s}$$
 dove $au = au_2, \ lpha = rac{ au_1}{ au_2} < 1$

- ullet Le specifiche dinamiche relative ad un sistema retroazionato vengono date in termini di margine di fase M_{arphi} e di margine di ampiezza M_{lpha} .
- I parametri τ_1 e τ_2 di una rete correttrice che introduce una amplificazione M ed un anticipo di fase φ in corrispondenza della pulsazione ω si determinano utilizzano le seguenti <u>formule di inversione</u>:

$$au_1 = rac{M - \cos \varphi}{\omega \sin \varphi}, ag{ au_2} = rac{\cos \varphi - rac{1}{M}}{\omega \sin \varphi}$$

Calcolo delle formule di inversione

• Problema di progetto: Determinare i valori τ_1 e τ_2 della rete correttrice C(s) in modo che

$$C(j\omega) = \frac{1 + j \tau_1 \omega}{1 + j \tau_2 \omega} = M e^{j\varphi}$$

cioè in modo che la rete amplifichi di M ed anticipi di φ in corrispondenza della pulsazione ω .

• Il problema di progetto è risolto dalle seguenti formule di inversione:

$$au_1 = rac{M - \cos arphi}{\omega \sin arphi}, ag{ au_2 = rac{\cos arphi - rac{1}{M}}{\omega \sin arphi}}$$

Le formule di inversione si ottengono riscrivendo l'equazione

$$C(j\omega) = \frac{1 + j \tau_1 \omega}{1 + j \tau_2 \omega} = M e^{j\varphi} = M \cos \varphi + jM \sin \varphi$$

nella forma

$$(M\cos\varphi + jM\sin\varphi)(1+j\ \tau_2\omega) = 1+j\ \tau_1\omega,$$

trasformando tale equazione nel sistema lineare

$$\begin{bmatrix} 1 & -M\cos\varphi \\ 0 & M\sin\varphi \end{bmatrix} \begin{bmatrix} \tau_1\omega \\ \tau_2\omega \end{bmatrix} = \begin{bmatrix} M\sin\varphi \\ M\cos\varphi - 1 \end{bmatrix}$$

e risolvendo rispetto alle variabili au_1 e au_2

• Forma unificata per la sintesi di reti correttrici:

$$C(s) = \frac{1 + \tau_1 s}{1 + \tau_2 s} = \frac{\omega \sin \varphi + (M - \cos \varphi) s}{\omega \sin \varphi + (\cos \varphi - \frac{1}{M}) s}$$

• Tale formula è valida sia per reti anticipatrici (M>1 e $\varphi>0)$ che ritardatrici (M<1 e $\varphi<0)$.

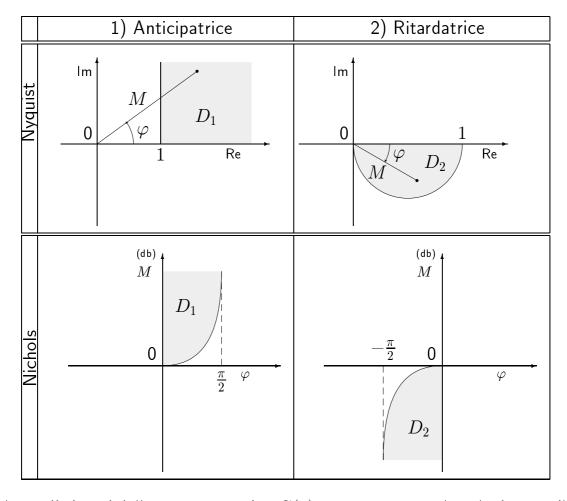
Domini di ammissibilità

• Le formule di inversione possono essere utilizzate solo se il punto (M, φ) appartiene ad uno di questi due domini di ammissibilità:

Rete Anticipatrice:
$$D_1 = \left\{ (M, \, \varphi) \ : \ 0 \leq \varphi < \frac{\pi}{2}, \quad M \geq \frac{1}{\cos \varphi} \geq 1 \right\}$$
 Rete Ritardatrice:
$$D_2 = \left\{ (M, \, \varphi) \ : \ -\frac{\pi}{2} < \varphi \leq 0, \quad 0 < M \leq \cos \varphi \leq 1 \right\}$$

Sono gli insiemi dei punti a cui posso giungere partendo dal punto $1+j\,0$ e applicando in tutti i modi possibili la specifica rete correttrice.

ullet Rappresentazione dei domini D_1 e D_2 sul piano di Nyquist e sul piano di Nichols:



- Il problema di sintesi della rete correttrice C(s) ammette una sola soluzione se il punto $(M,\,\varphi)$ appartiene ad uno dei domini di ammissibilità.
- Per verificare l'appartenenza del punto $(M,\,\varphi)$ ad uno dei due domini di ammissibilità è sufficiente utilizzare le formule di inversione e verificare che i parametri τ_1 e τ_2 ottenuti siano entrambi positivi. Se uno dei due parametri è negativo il punto $(M,\,\varphi)$ scelto non è ammissibile.