Contorno delle radici

- Si faccia riferimento alla seguente equazione caratteristica:

\[
1 + \frac{4(1 + 5\tau s)}{s(1 + \tau s)(1 + 0.2s)} = 0 \quad \Rightarrow \quad 1 + G_2(s, \tau) = 0
\]

Tracciare qualitativamente il contorno delle radici del sistema retroazonnato al variare del parametro \(\tau > 0 \).

- Si ha un problema di contorno delle radici tutte le volte che nell’equazione caratteristica il parametro che varia non è il guadagno \(K \) del sistema ma un qualunque altro parametro del sistema.

- Molto spesso, un problema di contorno delle radici può essere ricondotto ad un semplice problema di luogo delle radici procedendo nel seguente modo:

1) Si riscrive l’equazione caratteristica in forma polinomiale:

\[
s(1 + \tau s)(1 + 0.2s) + 4(1 + 5\tau s) = 0
\]

2) Si raccolgono tutti i termini che “moltiplicano” il parametro \(\tau \):

\[
s(1 + 0.2s) + 4 + \tau[s^2(1 + 0.2s) + 20s] = 0
\]

3) Si divide l’equazione caratteristica per il gruppo di termini che “non moltiplicano” il parametro \(\tau \):

\[
1 + \frac{\tau[s^2(1 + 0.2s) + 20s]}{s(1 + 0.2s) + 4} = 0 \quad \Leftrightarrow \quad 1 + \frac{\tau s[s^2 + 5s + 100]}{s^2 + 5s + 20} = 0
\]

\(1 + \tau G_3(s) \)

In questo modo ci si è ricondotti al semplice caso di studio del luogo delle radici della funzione \(G_3(s) \) al variare del parametro \(\tau \).
• Questo procedimento mette in evidenza che “un contorno delle radici può essere ricondotto ad un normale luogo delle radici tutte le volte che il parametro τ entra in modo lineare nell’equazione caratteristica del sistema retroazionato”.

• La funzione $G_3(s)$ non ha un significato fisico diretto per cui può anche essere una funzione non fisicamente realizzabile, cioè il suo grado relativo può anche essere negativo: $n - m < 0$ (come ad esempio accade nel caso in esame).

• Si noti che il polinomio che compare a denominatore della funzione $G_3(s)$ coincide con il polinomio caratteristico del sistema retroazionato che sia ha quando $\tau = 0$, cioè i poli da cui parte il contorno delle radici fanno parte del luogo delle radici del sistema per $\tau = 0$ e al variare del guadagno K.

• Nel caso in esame, gli zeri e i poli della funzione $G_3(s)$ sono:

$$z_1 = 0, \quad z_{2,3} = -2.5 \pm j9.682, \quad p_{1,2} = -2.5 \pm j3.708$$

• Andamento qualitativo del contorno delle radici al variare del parametro $\tau > 0$:

![luogo delle radici](image-url)
Esempio. Calcolare il contorno delle radici del seguente sistema al variare di $\tau > 0$.

$$G(s) \cdot H(s) = \frac{K}{s(1 + \tau s)}$$

L'equazione caratteristica del sistema retroazionato è:

$$1 + \frac{K}{s(1 + \tau s)} = 0 \quad \Rightarrow \quad \tau s^2 + s + K = 0$$

da cui si ottiene:

$$1 + \frac{\tau s^2}{s + K} = 0 \quad \Leftrightarrow \quad 1 + \tau G_3(s) = 0$$

Il luogo e il contorno delle radici del sistema $G(s)$ sono i seguenti:

![Diagrama a)](attachment:image1.png)

![Diagrama b)](attachment:image2.png)

Fissando un valore di K, che si indicherà con K_0, si stabilisce il punto del luogo ($-K_0$) da cui si origina il contorno delle radici.

Si noti che in questo caso la funzione $G_3(s)$ è impropria: ha un solo polo e due zeri. In situazioni di questo tipo (cioè quando il grado relativo $n - m$ è negativo) il luogo delle radici presenta $|n - m|$ asintoti che sono percorsi in senso inverso, cioè dall'infinito al finito.
Esempio. Calcolare il contorno delle radici del seguente sistema $G(s)$ al variare di $\tau > 0$.

$$G(s) = \frac{K}{s (s + 1) (1 + \tau s)}$$

L’equazione caratteristica del sistema retroazionato è:

$$1 + \frac{K}{s (s + 1) (1 + \tau s)} = 0 \quad \Rightarrow \quad s (s + 1) + K_0 + \tau s^2 (s + 1) = 0$$

da cui si ottiene:

$$1 + \frac{\tau s^2 (s + 1)}{s (s + 1) + K_0} = 0 \quad \Leftrightarrow \quad 1 + \tau G_3(s) = 0$$

Il luogo delle radici del sistema $G(s)$ al variare di K da 0 a ∞:

![Contorno delle radici](image1)

I contorni delle radici del sistema $G(s)$ al variare del parametro $\tau > 0$ e per tre diversi valori del parametro K:

![Contorno delle radici](image2)

![Contorno delle radici](image3)

Il contorno delle radici a) corrispondente a radici reali, gli altri due a radici complesse coniugate.
Esempio. Calcolare il contorno delle radici del seguente sistema \(G(s) \) al variare di \(\tau > 0 \).

\[
G(s) = \frac{K_1 (1 + \tau s)}{s (s + 1) (s + 2)}
\]

L'equazione caratteristica del sistema retroazionato è:

\[
1 + \frac{K_1 (1 + \tau s)}{s (s + 1) (s + 2)} = 0 \quad \Rightarrow \quad s (s + 1) (s + 2) + K_1 + \tau s K_1 = 0
\]

da cui si ottiene:

\[
1 + \frac{\tau s K_1}{s (s + 1) (s + 2) + K_1} = 0 \quad \Leftrightarrow \quad 1 + \tau G_3(s) = 0
\]

Il luogo delle radici del sistema \(G(s) \) al variare di \(K \) da 0 a \(\infty \) e il corrispondente contorno delle radici sono i seguenti:

Il contorno delle radici riportato in b) corrispondente al caso \(K_1 := 20 \), e i poli \(p_1, p_2 \) e \(p_3 \) da cui parte il contorno sono quelli mostrati in figura a).

Il contorno presenta due asintoti. Il punto d'incontro degli asintoti è sull'asse reale ed ha ascissa:

\[
\sigma_a = \frac{p_1 + p_2 + p_3 - 0}{3 - 1} = \frac{-3}{2} = -1.5
\]

Nota: nel caso in esame il punto di incontro degli asintoti del contorno delle radici è indipendente dal valore di \(K_1 \) per il quale il contorno è tracciato: tutti i contorni relativi a diversi valori di \(K_1 \) hanno gli stessi asintoti.
Teorema del baricentro
teorema del baricentro del luogo delle radici. La somma dei poli del sistema ottenuto chiudendo in retroazione un sistema dinamico descritto da una funzione di trasferimento razionale con polinomio a denominatore di grado superiore di almeno due a quello del polinomio a numeratore è indipendente dal valore del guadagno statico di anello e dalle posizioni degli zeri ed è uguale alla somma dei poli del sistema ad anello aperto.

Contorno delle radici del sistema \(G(s) = \frac{K_1 (1+\tau s)}{s (s+1)(s+2)} \) tracciato per diversi valori della costante \(K_0 \).

I rami principali del contorno delle radici (quelli relativi ai poli dominanti) sono tracciati per diversi valori di \(K_1 \): si ottiene così una famiglia di curve appoggiate al luogo delle radici.