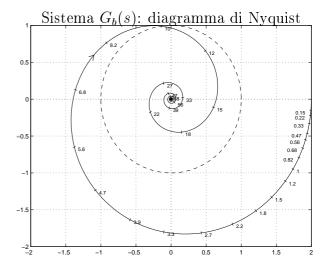
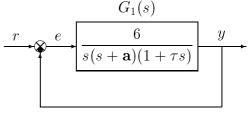
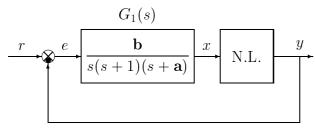

Controlli Automatici B 23 Marzo 2004 - Esercizi

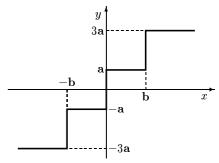

b

Nome:	
Nr. Mat.	
Firma:	

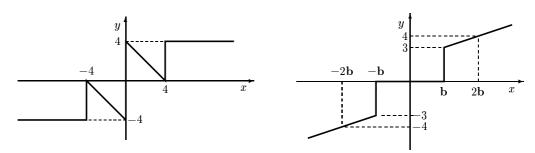

Negli esercizi che seguono, si sostituisca ad a e b i valori assegnati e si risponda alle domande.

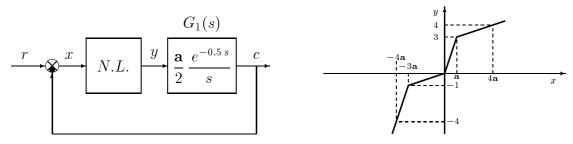
a) Siano date le seguenti due funzioni di risposta armonica dei sistemi $G_a(s)$ e $G_b(s)$:





- a.1) Per il sistema $G_a(s)$ progettare una rete anticipatrice in modo da far passare la nuova funzione di risposta armonica per il punto $B = ((-150 + \mathbf{a})^o, -6 \,\mathrm{db})$. Scegliere il valore della pulsazione ω che si ritiene più opportuno;
- a.2) Per il sistema $G_b(s)$ progettare una rete ritardatrice in grado da garantire al sistema compensato un margine di fase $M_{\varphi} = (30 + \mathbf{b})^o$. Scegliere il valore della pulsazione ω che si ritiene più opportuno;
- b) Si consideri il sistema lineare retroazionato riportato a fianco. Tracciare qualitativamente il contorno delle radici del sistema retroazionato al variare del parametro $\tau>0$.


c) Si consideri il seguente sistema non lineare retroazionato:


- c.1) Determinare i punti di lavoro (x_0, y_0) e (x_1, y_1) corrispondenti agli ingressi r = 0 e $r = 2\mathbf{a}$.
- c.2) Disegnare in modo qualitativo l'andamento della funzione descrittiva F(X) della non linearità y(x) nell'intorno del punto (0, 0). Utilizzare delle variabili (per esempio: m_1, m_2, \ldots) per rappresentare i valori minimi e massimi della F(X) che non siano noti.
- c.3) Discutere "qualitativamente" l'esistenza o meno di cicli limite nel sistema retroazionato al variare di un guadagno aggiuntivo K messo in cascata al sistema.
- c.4) Dove è possibile, determinare l'ampiezza X^* e la pulsazione ω^* degli eventuali cicli limite presenti nel sistema retroazionato.

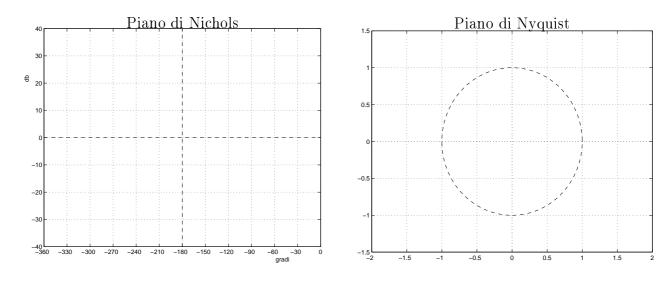
d) Date le seguenti caratteristiche non lineare simmetriche rispetto all'origine:

determinare "qualitativamente" gli andamenti delle corrispondenti funzioni descrittive $F_1(X)$ ed $F_2(X)$.

e) Si consideri il seguente sistema non lineare retroazionato:

Determinare il punto di lavoro (x_0, y_0) del sistema retroazionato corrispondente ad un riferimento costante r = 3. In base al criterio del cerchio, dire se il sistema retroazionato è stabile o meno.

f) Utilizzando il metodo della corrispondenza poli-zeri, discretizzare la seguente rete correttrice


$$D(s) = \frac{M(s)}{E(s)} = \frac{s + \mathbf{a}}{s + \mathbf{b}}$$

giungendo anche alla determinazione della corrispondente equazione alle differenze. Si utilizzi il periodo di campionamento T=0.05. Imporre l'uguaglianza del guadagno statico.

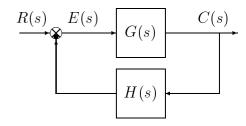
g) Calcolare la risposta al gradino unitario x(n) = 1 del seguente sistema dinamico discreto:

$$y(n+1) - y(n) = \mathbf{b} x(n)$$

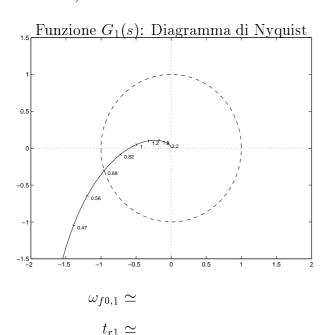
h) Disegnare "qualitativamente" sia sul piano di Nichols che sul piano di Nyquist la regione dei punti del piano che possono essere portati nel punto $B=-0.5=-1/M_{\alpha}$ (margine di ampiezza $M_{\alpha}=2=6$ db) utilizzando una rete ritardatrice.

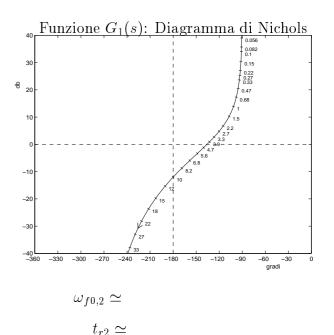
Controlli Automatici B 23 Marzo 2004 - Domande Teoriche

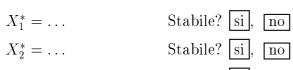
Nome:	
Nr. Mat.	
Firma:	


Rispondere alle domande e ai test che seguono. Per ciascuno dei test segnare con una crocetta le affermazioni che si ritengono giuste. La risposta al test è considera corretta solo se tutte le affermazioni corrette sono state contrassegnate.

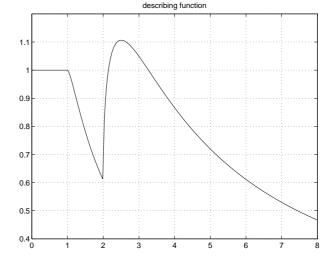
1. Scrivere la funzione di trasferimento G(s) di un regolatore standard PI e a fianco disegnare qualitativamente il corrispondente diagramma di Bode dei moduli:


G(s) =


- 2. Tipicamente, quali delle seguenti reti correttrici è bene utilizzare se si vuole stabilizzare in retroazione un sistema caratterizzato da un margine di fase fortemente negativo?
 - una rete anticipatrice;
 - O una rete ritardatrice;
 - O un regolatore PD;
 - O un regolatore PI;
- 3. Si consideri il sistema retroazionato riportato di fianco. Scrivere il legame che lega la variazione relativa del sistema G(s) alla variazione relativa del sistema retroazionato $G_0(s)$ quando varia un parametro α interno alla funzione di trasferimento G(s),:


$$\frac{\Delta G_0(s)}{G_0(s)} = \frac{\Delta G(s)}{G(s)}$$

4. Fornire una stima della larghezza di banda ω_{f0} e del tempo di salita t_r dei due sistemi retroazionati corrispondenti ai seguenti sistemi $G_1(s)$ (diagramma di Nyquist) e $G_2(s)$ (Diagramma di Nichols):



5. Quella riportata a fianco è la funzione descrittiva F(X) di una non linarità posta in retroazione su di un sistema lineare G(s) caratterizzato da un margine di ampiezza $M_{\alpha} = 0.9$. Fornire una stima dell'ampiezza X^* di ciascun ciclo limite (stabile e instabile) eventualmente presente all'interno del sistema retroazionato:

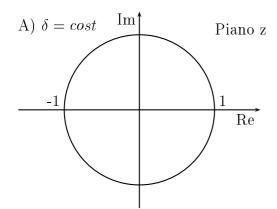
6. Indicare quali dei seguenti sistemi discreti G(z) sono asintoticamente stabili:

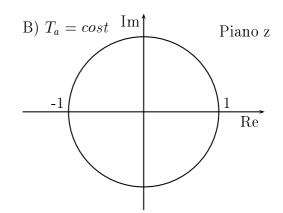
$$\bigcirc G(z) = \frac{(z+2)}{z(z+0.2)}$$

$$\bigcirc G(z) = \frac{1}{z^2(z-0.4)}$$

$$\bigcirc G(z) = \frac{(z+0.2)}{z(z+2)}$$

$$\bigcirc G(z) = \frac{z}{(z+1)}$$


7. Calcolare la soluzione y(n) della seguente equazione alle differenze a partire dalla condizione iniziale $y(0) = y_0$:


$$y(n+1) = 0.8 y(n) \qquad \rightarrow \qquad y(n) =$$

- 8. Si consideri il sistema discreto D(z) posto in retroazione sul guadagno K > 0. Per studiare la stabilità del sistema retroazionato
 - \bigcirc è possibile applicare direttamente il criterio di Routh all'equazione $1+K\,D(z)=0$ polinomiale in z
 - è possibile utilizzare il luogo delle radici
 - \bigcirc è possibile utilizzare il criterio di Nyquist
- 9. In un sistema discreto a segnali campionati, qual è il legame che lega la variabile s di Laplace e la variabile discreta z?

s =

10. Tracciare qualitativamente sul piano z: A) i luoghi a coefficiente di smorzamento δ costante; B) i luoghi a decadimento esponenziale costante

