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Root locus

• Consider the following feedback scheme:

• The transfer function G0(s) of the feedback system is:

G0(s) =
G(s)

1 +G(s)H(s)

The poles of the feedback system coincide with the roots of the following

characteristic equation:

1 +G(s)H(s) = 0

• let us suppose that function G(s)H(s) is given in the following poles-zeros

factorized form:

F (s) = G(s)H(s) = K1
(s− z1) (s− z2) . . . (s− zm)

(s− p1) (s− p2) . . . (s− pn)
, n ≥ m

where K1 is positive constant.

• When parameter K1 ranges from 0 to ∞, the roots of the characteristic

equation (and therefore the poles of the feedback system) draw a set of

curves on the complex plane called the “root locus” of function F (s).

• The root locus graphically shows how the poles of the feedback systems

moves on the complex plane when the gain changes from 0 to ∞.
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• If G1(s) is defined as follows:

G1(s) :=
(s− z1) (s− z2) . . . (s− zm)

(s− p1) (s− p2) . . . (s− pn)

the characteristic equation of the feedback system can be rewritten as

1 +K1G1(s) = 0

• If the constant K1 is positive, we have:

|G1(s)| =
1

K1
, argG1(s) = (2 ν + 1) π (ν integer)

• If K1 is negative, we have:

|G1(s)| = − 1

K1
, argG1(s) = 2 ν π (ν integer)

• The phase equation argG1(s) = (2 ν + 1) π is used for plotting the

root locus. The modulus equation is uses to compute the values of K1

corresponding to the points s which belong to the root locus:

K1 =
−1

G1(s)
.

• Example. Given the system

G(s)H(s) =
K1

s
(

s + 1
τ

)

the corresponding root locus when

K1 ranges from 0 to ∞ is shown

on the aside figure.
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Properties of the root locus

The root locus satisfies the following properties.

• Property 1. The root locus has as many branches as the number of

poles of the open loop transfer function K1G1(s). Each branch starts at

a pole of function G1(s) and ends in a zero of function G1(s) or at the

infinity.

• Property 2. The root locus is symmetrical with respect to the real axis.

• Property 3. If constant K1 is positive, a point of the real axis belongs

to the root locus if an odd number of poles and zeros is left to its right.

If constant K1 is negative, a point of the real axis belongs to the root

locus if an even number of poles and zeros is left to its right.

• Property 4. Let K1 be a positive constant. For K1 = 0+ the root locus

leaves a pole pi with the following angle:

(2 ν + 1) π +

m
∑

j=1

arg (pi − zj)−
∑

j∈J ′
arg (pi − pj) ,

where J ′ := {1, 2, . . . , i−1, i+1, . . . , n}. For K1 → ∞ the root locus

tends to a zero zi with the following angle:

(2 ν + 1) π −
∑

j∈J ′′
arg (zi − zj) +

n
∑

j=1

arg (zi − pj) ,

where is J ′′ :={1, 2, . . . , i−1, i+1, . . . ,m}. If the constantK1 is negative,

in the previous statements the term (2ν+1) π must be replaced by term

2νπ.
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• Example:

• Property 5. A root of order h corresponds to a point “sh” which belongs

to h branches of the root locus. The point “sh” satisfies the characteristic

equation 1 +K1G1(s) = 0 and its derivatives with respect to s up to the

order (h−1):

d

ds
G1(s) = 0, . . . ,

dh−1

dsh−1
G1(s) = 0

Case h = 2: for increasing values of parameter K1, two branches of the

root locus enter the point s2 in opposite directions, and then exit point s2
along directions which are perpendicular to the entering directions.

Nichols

• Property 6. In the neighborhood of a root sh is of order h, in the rot

locus there are h branches entering the point sh and h branches existing

the same point. The entering and the exiting branches alternates each

other, and locally they divide the plane into equal sectors of π/h radians.
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• Property 7. The number of the asymptotes of the root locus is equal

to the relative degree: r = n −m. The asymptotes are half lines which

divide the plane in equal sectors, and which exit from the following point

of the real axis:

σa =
1

n−m

( n
∑

i=1

pi −
m
∑

i=1

zi

)

If constant K1 is positive, the asymptotes form the following angles with

the real axis:

ϑa,ν =
(2 ν + 1) π

n−m
(ν = 0, 1, . . . , n−m−1)

If constant K1 is negative, the asymptotes form the following angles with

the real axis:

ϑa,ν =
2 ν π

n−m
(ν = 0, 1, . . . , n−m−1)

• The points where the root locus intersects the imaginary axis can be de-

termined using the Routh criterion: the parameters K∗ and ω∗ provided

both the value of parameter K1 = K∗ and the frequency ω = ω∗ for

which the root locus intersects the imaginary axis.
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Example. Let us consider the following transfer function:

G(s)H(s) =
K1

s (s+ 1) (s+ 2)
.

Since n−m=3, the root locus has three asymptotes which intersect in the following point:

σa =
0− 1− 2

3
= −1

and which form the following angles with the real axis:

ϑa0 = 60◦ , ϑa1 = 180◦ , ϑa2 = −60◦

The root locus is the following:

phase

Note: when parameter K1 increases, the feedback system becomes unstable.

The branching point on the real axis can be determined by solving the following equation:

d

ds
[1 +G(s)H(s)] = 0 → 3 s2 + 6 s+ 2 = 0 .

The equation has two real solutions: s1 = −0.422 and s2 = −1.577. The first solution s1
belongs to the root locus for K1 > 0, the second solution s2 belongs to the root locus for

K1 < 0.
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The intersection with the imaginary axis can be determined using the Routh criterion. The
characteristic equation is:

1 +G(s)H(s) = 0 ⇒ s (s+ 1) (s+ 2) +K1 = 0

that is

s3 + 3 s2 + 2 s+K1 = 0

The Routh table is:
3 1 2
2 3 K1

1 (6−K1)/3 0
0 K1

The feedback system is stable for 0 < K1 < K∗ = 6. Using the auxiliary equation:

3 s2 + 6 = 0

one obtains the points s1,2 = ±jω∗ and the frequency ω∗ =
√
2 = 1.41 where the root

locus intersections the imaginary axis.
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Example. Qualitatively draw the root locus of the following system:

G(s) =
K(s+ 4)

s(s+ 3)

when K > 0. The characteristic equation of the feedback system is:

1 +
K(s+ 4)

s(s+ 3)
= 0

The root locus of the feedback system when K > 0 is:
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Root locus

The branch points on the real axis can be determined as follows:

d

d s

[

K(s+ 4)

s(s+ 3)

]

= 0 → s(s+ 3)− (s+ 4)(2s+ 3) = 0 → s2 + 8s+ 12 = 0

The branch points are placed in σ1 = −2 and in σ1 = −6. The corresponding values of K

are obtained as follows:

K1 = − 1

G(s)

∣

∣

∣

∣

s=σ1

= 1, K2 = − 1

G(s)

∣

∣

∣

∣

s=σ1

= 9

Note. When the two branches of the root locus of a system having only two poles and

one zero exit the real axis, they move along a circumference having its center in the zero
and a radius R =

√
d1d2, where d1 and d2 are the distance of the two poles from the zero.

In the considered case we have:

R =
√

(4− 1)(4− 3) = 2.
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Some examples of places of roots

• Root locus of first-order systems:

Amplitude

• Root locus of second-order systems:

wing
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• Root locus of second-order systems:degrees[db]

• Root locus of third-order systems:
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• Root locus of third-order systems:diagram
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• Root locus of fourth-order systems:
mo



5.3. QUALITATIVE DRAWING OF THE ROOT LOCUS 7.1 1

Nonlinear systems: equilibrium points

• Let us consider the following feedback nonlinear system:

Phase

• Let us suppose that the reference signal r1 is constant.

• The equilibrium points (xi, yi) of the considered nonlinear system can easily

be determined graphically:

Nichols diagram

• The equilibrium point (x1, y1) is the intersection of the non linear function

y = F (x) with the following straight line which describes the steady-state

behavior of the linear part of the considered feedback system:

x = K1 r −K1K2K3 y

whereK1 :=G1(0), K2 :=G2(0), K3 :=H(0) are the static gains of the system.
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• As the input r changes, the load line moves parallel to itself, and the equili-

brium point moves along the characteristic of the nonlinear element.

Special cases:

1) If the system G1(s) is of type 1 (ie it has a pole in the origin), the

corresponding static gain is K1 = ∞ and the load line becomes

r = K2K3 y → y =
1

K2K3
r

The corresponding graphic construction is:

Amplitude

2) If the system G2(s)[or the system H(s)] is of type 1, the corresponding

static gain is K2 = ∞ (K3 = ∞) and the load line becomes

y = 0

In this case the equilibrium point is given by the intersection of the function

y = f (x) with the axis of abscissas y = 0.

• The local behavior of the system depends on the particular equilibrium point

considered and therefore on the value of r1.

• In the case of linear systems, the dynamic behavior is identical in the

neighborhood of any equilibrium point.
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• In the case of non-linear systems, on the other hand, there is talk of stability

of a point of equilibrium and not of stability of the system;

• The stability of a particular equilibrium point of a non-linear system can

depend on the perturbation entity.

• The control devices must be designed in such a way that the controlled

system is globally asymptotically stable, that is asymptotically stable: a) for

any equilibrium point in which the system can lead to changes in the entrance;

b) per disturbance of any entity.

• Operating the change of variables ∆x :=x−x1, ∆y :=y−y1 and ∆r :=r−r1,
the previous feedback system can be represented (equivalently) by the following

scheme:

[degrees]

where you place G(s) :=G1(s)G2(s)H(s). The origin of the new coordinate

system (∆x, ∆y) coincides with the equilibrium point x1, y1.

• When r is constant or slowly variable, the study of the stability of the

nonlinear feedback system can be done by referring to the latter autonomous

system (ie, it is devoid of inputs).

• Another notable difference between the behavior of linear systems and that

of nonlinear systems is that they can also have limit cycles /, that is of

asymptotically stable self-sustaining periodic motions.

• The study of the limit cycles is also important in relation to the control

systems since when, increasing the ring gain, these are brought into instability

conditions, they generally assume a stable periodic motion, due to the fact

that the inevitable saturations limit the excursions of the different variables

and therefore prevent the indefinite exaltation of the self-sustained oscillations.


