5.1.1

Root locus

e Consider the following feedback scheme:

—;QE)—_- G(s) -

H(s) je—

e The transfer function Gy(s) of the feedback system is:

__ Gl
- 1+G(s)H(s)

The poles of the feedback system coincide with the roots of the following

C?o(S)

characteristic equation:
1+ G(s)H(s) =0

e let us suppose that function G(s) H(s) is given in the following poles-zeros
factorized form:

(s —2z1)(s—2) ... (s— zp)
(s=pi)(s—p2) .- (s—pn)

where K is positive constant.

F(s)=G(s)H(s) = Ky n>m

e When parameter K ranges from 0 to oo, the roots of the characteristic
equation (and therefore the poles of the feedback system) draw a set of
curves on the complex plane called the “root locus’ of function F(s).

e The root locus graphically shows how the poles of the feedback systems
moves on the complex plane when the gain changes from 0 to .



5.1.2

5.1. ROOT LOCUS

o If G1(s) is defined as follows:
(s —2z1)(s—22) ... (s — 2zm)
(s —=p1)(s—p2) ... (s—pn)

the characteristic equation of the feedback system can be rewritten as

1—|—K1G1(S) =0

Gl(S) =

e If the constant K is positive, we have:

|G1(s)] ! argG1(s) = 2v+1)7m (v integer)

— E ,
e If K is negative, we have:
1
G1(s)| = K arg G1(s) =2vm (v integer)

e The phase equation argGi(s) = (2v + 1)7 is used for plotting the

root locus. The modulus equation is uses to compute the values of K;
corresponding to the points s which belong to the root locus:

—1
K = :
Gi(s)
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on the aside figure. “S*
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Properties of the root locus

The root locus satisfies the following properties.

e Property 1. The root locus has as many branches as the number of
poles of the open loop transfer function K G1(s). Each branch starts at
a pole of function GG1(s) and ends in a zero of function G1(s) or at the
infinity.

e Property 2. The root locus is symmetrical with respect to the real axis.

e Property 3. If constant K is positive, a point of the real axis belongs
to the root locus if an odd number of poles and zeros is left to its right.
If constant K is negative, a point of the real axis belongs to the root
locus if an even number of poles and zeros is left to its right.

e Property 4. Let K be a positive constant. For K; = 0 the root locus
leaves a pole p; with the following angle:

(2u+1)7r+2arg(pi—zj)— Zarg(pz’—Pj) )

where J':={1,2,...,i—1,i+1,...,n}. For K3 — oo the root locus
tends to a zero z; with the following angle:

Qrv+1)m— Z arg (z; — 2;) +Za1"g(zz' — D),
jeJg” j=1

where is 7" :={1,2,...,i—1,41,...,m}. If the constant K is negative,

in the previous statements the term (2v+1) 7 must be replaced by term

2UT.
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e Example:

e Property 5. A root of order i corresponds to a point “s;” which belongs
to h branches of the root locus. The point “s;,” satisfies the characteristic

equation 1+ K1G1(s) = 0 and its derivatives with respect to s up to the
order (h—1):

dh—l

d
—Gi(s) =0, ) Jgh—1

s Gl(S) =0

Case h = 2: for increasing values of parameter K7, two branches of the
root locus enter the point s, in opposite directions, and then exit point s
along directions which are perpendicular to the entering directions.

e Property 6. In the neighborhood of a root sy, is of order h, in the rot
locus there are h branches entering the point s, and h branches existing
the same point. The entering and the exiting branches alternates each
other, and locally they divide the plane into equal sectors of 7/h radians.
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e Property 7. The number of the asymptotes of the root locus is equal
to the relative degree: »r = n — m. The asymptotes are half lines which
divide the plane in equal sectors, and which exit from the following point

Ua:n_lm (;pz_zzz)

i=1
If constant /(i is positive, the asymptotes form the following angles with

of the real axis:

the real axis:

2 1
ﬁaW:( vt Dm (r=0,1,..., n—m—1)
n—m

If constant Ky is negative, the asymptotes form the following angles with
the real axis:

2
Vo = ] (r=0,1,...,n—m—1)
n—m

e The points where the root locus intersects the imaginary axis can be de-
termined using the Routh criterion: the parameters K* and w™ provided
both the value of parameter K1 = K™ and the frequency w = w* for
which the root locus intersects the imaginary axis.



5.2. PROPERTIES OF THE ROOT LOCUS 0.2.4

Example. Let us consider the following transfer function:
K,
s(s+1)(s+2)°
Since n—m =3, the root locus has three asymptotes which intersect in the following point:
0-1-2
3

and which form the following angles with the real axis:

G(s) H(s) =

4 —1

Oao = 60°, P, =180°, Uyo = —60°

The root locus is the following:

Note: when parameter K increases, the feedback system becomes unstable.

The branching point on the real axis can be determined by solving the following equation:

d
d—[1+G(s)H(s)] =0 — 352 +65+2=0.
S
The equation has two real solutions: s; = —0.422 and sy = —1.577. The first solution s,
belongs to the root locus for K7 > 0, the second solution s, belongs to the root locus for

K, <O.
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The intersection with the imaginary axis can be determined using the Routh criterion. The
characteristic equation is:

1+G(s)H(s) =0 = s(s+1)(s+2)+ K =0

that is
$3+3s24+2s+ K, =0

The Routh table is:

3 1 2
2 3 K
1 (6 —K1)/3 0
o] K

The feedback system is stable for 0 < K7 < K* = 6. Using the auxiliary equation:
35 +6=0

one obtains the points s;9 = £jw* and the frequency w* = v/2 = 1.41 where the root
locus intersections the imaginary axis.
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Example. Qualitatively draw the root locus of the following system:

 K(s+4)
=+

when K > 0. The characteristic equation of the feedback system is:

K(s+4) 0
s(s+3)
The root locus of the feedback system when K > 0 is:

Root locus

The branch points on the real axis can be determined as follows:

d [K(s+4) 5
— |——=| =0 3) — 1)(2s+3)=0 — 8s+12=0
ds[s(s+3)] —  s(s+3)—(s+4)(25+3) s+ 8s+

The branch points are placed in 0 = —2 and in 0 = —6. The corresponding values of K

are obtained as follows:

1
G(s)

1
=1 Ky = — =9

Ky =—

S§=01 S§=01

Note. When the two branches of the root locus of a system having only two poles and
one zero exit the real axis, they move along a circumference having its center in the zero
and a radius R = \/d;dy, where d; and ds are the distance of the two poles from the zero.
In the considered case we have:

R=+/(4—1)(4-3)=2.
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Some examples of places of roots

e Root locus of first-order systems:
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5.4. ROOT LOCUS: SOME EXAMPLES

5.4.2

e Root locus of second-order systems:
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5.4. ROOT LOCUS: SOME EXAMPLES 0.4.3

e Root locus of third-order systems:

-394

)




5.4. ROOT LOCUS: SOME EXAMPLES 5.4.4

e Root locus of fourth-order systems:
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5.3. QUALITATIVE DRAWING OF THE ROOT LOCUS 7.1.1

Nonlinear systems: equilibrium points

e Let us consider the following feedback nonlinear system:

! - Gi(s) c . b~ v Gals) ¢

¥

e Let us suppose that the reference signal r; is constant.

e The equilibrium points (x;,y;) of the considered nonlinear system can easily
be determined graphically:
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e The equilibrium point (x1, ;) is the intersection of the non linear function
y = F(x) with the following straight line which describes the steady-state
behavior of the linear part of the considered feedback system:

T = Klr— KlKgKgy
where K1:=G1(0), K5:=G4(0), K3:= H(0) are the static gains of the system.



7.1. EQUILIBRIUM POINTS 7.12

e As the input r changes, the load line moves parallel to itself, and the equili-
brium point moves along the characteristic of the nonlinear element.

Special cases:

1) If the system Gy(s) is of type 1 (ie it has a pole in the origin), the
corresponding static gain is /{1 = oo and the load line becomes

1
r= Ky K — = r
2 A3Y Y K, K
The corresponding graphic construction is:
y A
vi=r1/K,K; \ /_
_____________________ b
______________ N
|
Iy T

2) If the system Gy(s)[or the system H(s)] is of type 1, the corresponding
static gain is Ky = oo (K3 = 00) and the load line becomes
y =0

In this case the equilibrium point is given by the intersection of the function
y = f(x) with the axis of abscissas y = 0.

e The local behavior of the system depends on the particular equilibrium point
considered and therefore on the value of 7.

e In the case of linear systems, the dynamic behavior is identical in the
neighborhood of any equilibrium point.



7.1. EQUILIBRIUM POINTS 7.1.3

e In the case of non-linear systems, on the other hand, there is talk of stability
of a point of equilibrium and not of stability of the system;

e The stability of a particular equilibrium point of a non-linear system can
depend on the perturbation entity.

e The control devices must be designed in such a way that the controlled
system is globally asymptotically stable, that is asymptotically stable: a) for
any equilibrium point in which the system can lead to changes in the entrance;
b) per disturbance of any entity.

e Operating the change of variables Az :=x—x, Ay:=y—y; and Ar:=r—ry,
the previous feedback system can be represented (equivalently) by the following

Az Ay{/\_ Ay a
1 a4 1 Y

scheme:

where you place G(s):=G1(s) Ga(s) H(s). The origin of the new coordinate
system (Azx, Ay) coincides with the equilibrium point x1, ;.

e When r is constant or slowly variable, the study of the stability of the
nonlinear feedback system can be done by referring to the latter autonomous
system (ie, it is devoid of inputs).

e Another notable difference between the behavior of linear systems and that
of nonlinear systems is that they can also have limit cycles /, that is of
asymptotically stable self-sustaining periodic motions.

e The study of the limit cycles is also important in relation to the control
systems since when, increasing the ring gain, these are brought into instability
conditions, they generally assume a stable periodic motion, due to the fact
that the inevitable saturations limit the excursions of the different variables
and therefore prevent the indefinite exaltation of the self-sustained oscillations.



