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Abstract: One of the main issues of any control strategy for braking systems is to
face the many uncertainties due to the strong spread of the system’s parameters:
road conditions, actuator dynamics, tire behaviour, etc. This paper proposes a
self-tuning control for an electromechanical braking system. Electromechanical
brake system is a promising replacement for hydraulic brakes in the automotive
industry. The proposed control can be seen as a minimum seek algorithm in a
highly uncertain situation. Only the measure of the wheel angular speed and a
rough measure (or estimate) of the actuator force on the brake pads are required.
The proposed control is tested by simulation studies. Copyright c© 2006 IFAC
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1. INTRODUCTION

Antilock braking systems (ABS) are now a com-
monly installed feature in road vehicles. They are
designed to stop vehicles as safely and quickly as
possible. Safety is achieved by maintaining the
steering effectiveness and trying to reduce brak-
ing distances over the case where the brakes are
controlled by the driver during a “panic stop”, see
(Robert Bosch GmbH, 2000).

The ABS control systems are based on the typ-
ical tire behaviour described in (Pacejka, 2002)
and briefly shown in Fig. 1. As demonstrated in
(Tsiotras and Canudas de Wit, 2000), optimal
braking (in terms of minimum traveled distance)
occurs when the longitudinal force Fx operates
at its minimum value along the force-slip curve.
The slip value corresponding to the minimum
longitudinal force Fx depends also on the road
conditions, vehicle speed, the normal force, the
tire temperature, the steering angle, etc. The main

issue of the ABS control strategies is to track
the optimal slip value λopt corresponding to the
minimum longitudinal force Fx using the smallest
number of sensors, using the cheapest hardware
and facing the uncertainties due to both the ag-
ing of components and the unknown working and
environmental conditions.

Many strategies are based on the slip control, see
(Lin and Hsu, 2003), (Tan and Tomizuka, 1990),
(Armeni and Mosca, 2003), (Kazemi and Za-
viyeh, 2001) and (Savaresi et al., 2005). Theo-
retically, the method of slip control is the ideal
method. However, two problems arise: the (un-
known) optimal slip value must be identified and
the vehicle speed must be measured or estimated
in a low cost and reliable way. To overcome these
problems, either pressure measurement have been
proposed (Drakunow et al., 1994) or the braking
torque is supposed to be known (Lennon and
Passino, 1999), (Chamaillard et al., 1994), (Ünsal
and Kachroo, 1999). These solutions lead to very



good performances, but do not fit the cost require-
ments. Moreover, many papers give important
theoretical results but do not deal with the dy-
namics of the actuators. Currently most commer-
cial ABSs use a look-up tabular approach based on
wheel acceleration thresholds, see (Robert Bosch
GmbH, 2000), (Kiencke and Nielsen, 2000) and
(Wellstead and Pettit, 1997). These tables are cal-
ibrated through iterative laboratory experiments
and engineering field tests. Therefore, these sys-
tems are not adaptive and issues such as robust-
ness are not addressed.

In recent years the automotive industry is prompt-
ing “by wire” mechanism to increase comfort,
efficiency and safety. One of such system is the
electromechanical brake system, a promising re-
placement for the hydraulic brakes. An example
of electromechanical brake system can be found
in (Krishnamurthy et al., 2005).

The work proposed in this paper shows that for
electromechanical brakes it is possible to track the
optimal slip value by measuring only the wheel
speed and knowing when the force on the brake
pads is constant. The proposed control can be
seen as a minimum seek algorithm in a highly
uncertain situation: the slip is neither measured
nor estimated, the tire longitudinal force as a
function of the tire slip is unknown, time varying,
speed varying and it is only supposed to have
always a unique minimum; the actuator dynamics
is taken into account however it is not a priori

known by the controller; the brake fading effect is
considered. These phenomena are not considered
all together in the cited papers.

The paper is organized as follows: the dynamic
models of a standard braking system are described
in Sec. 2. Based on this model, the basic operating
principle of the proposed control is explained in
Sec. 3. The control strategy is then described in
Sec. 4 and tested by simulations in Sec. 5. Finally
some conclusions are drawn.

2. MODEL OF A BRAKING SYSTEM

The braking system consists of three intercon-
nected subsystems: the tires, the vehicle and the
electromechanical actuator.

One of the most widely used tire model is the
Pacejka’s “magic formula”, see (Pacejka, 2002).
This is a set of static maps which give the tire
forces as a function of the longitudinal slip λ,
the slip angle α, the camber angle γ and the
vertical load Nz. The static maps are obtained by
interpolating experimental data. The longitudinal
slip rate λ during braking is defined as:

λ =
ω Re − vx

vx

(1)
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Fig. 1. Basic tire behaviour.

where ω denotes the wheel angular speed, Re is
the rolling radius and vx is the longitudinal speed
of the wheel center in forward direction, see Fig. 1.
For a longitudinal braking with constant camber
and slip angles, vx is the vehicle speed and the
longitudinal force Fx is Fx(λ) = Nz µ(λ) where
the friction coefficient µ(λ) is given by:

µ(λ)=D sin(Catan(Bλ−E(Bλ−atan(Bλ)))) (2)

The constants B, C, D and E are chosen to match
the experimental data. A qualitative example of
the curve Fx(λ) is shown in Fig. 1. The curve
Fx(λ) may be time-varying due to numerous fac-
tors, in the sequel of the paper we sum all these
effects by considering the longitudinal force as a
function of the slip and of the time: Fx = Fx(λ, t).
The assumption is that for any instant t = t the
curve Fx(λ) = Fx(λ, t) has a unique minimum.

The dynamic behaviour of a wheel during braking
is described by the differential equation:

Jwω̇ = −Kbrk(t) F − Re Fx(λ, t) (3)

where F is the force on the brake pads, Kbrk(t)
denotes the brake gain, τw = −Kbrk(t) F is the
braking torque. The gain Kbrk is time-varying due
to the brake fading effect: due to the heat gen-
erated while braking the brake disk temperature
increases and, for common commercial brakes, the
gain Kbrk decreases.

In this work we consider a simplified model of a
single wheel braking vehicle, the dynamics of this
quarter vehicle model is described by:

Mv̇x = Fx(λ, t) − Fa (4)

where M is the mass of the quarter vehicle and
Fa is the aerodynamic drag force. During braking
both Fx(λ, t) and λ are negative.

The control strategy (proposed in Section Sec. 4)
is almost independent from the actuator struc-
ture, however to obtain reasonable simulation re-
sults, the actuator dynamics is the same as in
(Krishnamurthy et al., 2005).

3. BASIC PROPERTIES

Optimal braking occurs when the longitudinal
force Fx operates at its minimum value along



the force-slip curve. The proposed ABS control
can be seen as a minimum-seek algorithm. Since
the force-slip curve has always a minimum, it is
first necessary to determine whether the operating
point lies in the left or in the right region with
respect to this minimum. Then the brake actuator
is operated to switch from one region to the
other. By this way, a “limit cycle” around the
optimal slip value arises and it guarantees that the
longitudinal force Fx varies around its minimum.

From (1) the time derivative of the slip λ is:

λ̇ = Re

ω̇ vx − ω v̇x

v2
x

(5)

where v̇x is the longitudinal acceleration Ax of the
vehicle. Note that when vx is reaching zero, the
slip λ can vary faster than at high longitudinal
speeds. This explains why the worst performance
of the ABS controllers happens usually at low
speed.

Property 1: if ω̇ ≥ 0 then λ̇ > 0. Proof: the
sign of the slip derivative λ̇ is the sign of the term
ω̇ vx−ω v̇x. During braking v̇x ≤ 0 and ω is limited
by the vehicle speed: vx ≥ Reω ≥ 0. If ω̇ ≥ 0 then
λ̇ > 0 and the slip λ increases. �

Property 2: it exists a limited angular accelera-

tion value ω̇N such that if ω̇ ≤ ω̇N then λ̇ < 0.
Proof: since the minimum longitudinal accelera-
tion v̇x (maximum braking at the best conditions)
is limited Amin

x ≤ v̇x ≤ 0 and during braking vx ≥

Reω ≥ 0, it exists a limited angular acceleration
value such that λ̇ < 0 is ensured. This acceleration
value can be easily found to be ω̇N = Amin

x /Re

indeed:

ω̇ <
Amin

x

Re

=
Amin

x ω

Reω
≤

Amin
x ω

vx

≤
v̇xω

vx

⇒ λ̇ < 0

�

Let ω̇p ≥ 0 be a design parameter. If ω̇ ≥ ω̇p then,

thanks to Property 1, λ̇ > 0. Let ω̇n ≤ ω̇N < 0 be
another design parameter, thanks to Property 2,
if ω̇ ≤ ω̇n then λ̇ < 0. Both ω̇p and ω̇n are “free”
parameters that can be tuned to achieve the best
possible braking performance.

Let derive equation (3) with respect to the time:

Jwω̈=−Kbrk Ḟ−K̇brk F−Re

∂Fx

∂λ
λ̇−Re

∂Fx

∂t
(6)

The operating point is in the stable region if
∂Fx/∂λ > 0 (see Fig. 1). Assuming λ̇ 6= 0, ∂Fx/∂λ
is obtained from (6):

∂Fx

∂λ
=−

1

Re λ̇

[

Jwω̈+Kbrk Ḟ +K̇brk F +Re

∂Fx

∂t

]

(7)
The unknown terms in equation (7) are Kbrk(t),
K̇brk(t) and ∂Fx/∂t, however if F is constant the
term Kbrk Ḟ is zero.

Property 3: if the force F is constant and ω̇ ≥ ω̇p

then:

∂Fx

∂λ
> 0 ⇔

[

Jwω̈+K̇brk F +Re

∂Fx

∂t

]

< 0 (8)

Proof: since ω̇ ≥ ω̇p from Property 1 follows

λ̇ > 0. The above relation can now be derived
from equation (7) whit Ḟ = 0. �

Property 4: if the force F is constant and ω̇ ≤ ω̇n

then:

∂Fx

∂λ
< 0 ⇔

[

Jwω̈+K̇brk F +Re

∂Fx

∂t

]

< 0 (9)

Proof: since ω̇ ≤ ω̇n from Property 2 follows
λ̇ < 0. The above relation can now be derived
from equation (7) whit Ḟ = 0. �

4. SELF-TUNING CONTROL

The proposed control strategy is based on the four
properties presented above and on the following
assumptions or requirements:

A.1) The electromechanical actuator can hold a
constant force F and it is possible to detect
if the force F on the brake pads is constant.

A.2) The wheel angular speed ω is measured. The
wheel angular acceleration ω̇ is measured or
estimated.

A.3) The tire characteristic Fx(λ, t) has a unique
minimum for −1≤λ<0 at any time.

Let k denote the current sampling instant and let
T be the sampling period of the controller.

Properties 3) and 4) of the previous section re-
quires the second derivative of the wheel speed.
This is a problem in a real applications where
only the wheel speed is measured. To overcome
this problem, the acceleration variation ∆ω̇(k) is
measured instead of the second derivative ω̈. A
method to get a reliable measure, is to compute
∆ω̇(k) by linearly interpolating the acceleration
values ω̇(i) for i = k−nh, ..., k where nh ∈ N is
a design parameter that denotes the number of
sampling periods that are needed to get a reliable
measure of ∆ω̇(k). With a small nh, if the acceler-
ation variation is small the measurement noise will
affect the measure. With good low-noise sensors
nh can be small.

The key idea of the control strategy is to use
properties 3 and 4 (with ∆ω̇(k) instead of ω̈) to
detect when the operating point is about passing
from the stable to the unstable region (property
4) or vice versa (property 3) assuming a constant
force F on the brake pads.

Due to the unknown terms in (8) and (9), the
threshold ∆ω̇(k) ≤ 0 is used to approximately
detect the instant when λ = λopt (the two in-
equalities involving the square brackets have the
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Fig. 2. State chart of the proposed control.

same form). By this way, the two unknown terms
in (8) and (9) and the error between ∆ω̇(k) and
ω̈ have the effect to advance or to delay the corre-
sponding control action. However if the unknown
terms in (8) and (9) are sufficiently small, this
delay/advance is not significative and does not
affect the efficiency of the proposed control (see
the simulation examples given next). If the two
unknown terms are neglected (as often is in the lit-
erature) the switching of the control action when
∆ω̇(k) ≤ 0 is essentially exact.

Let FR denote the force reference for the electro-
mechanical actuator. The three basic control ac-
tion are the following:

DECREASE: Fr(k + 1) = Fr(k) + ∆Fdec T
decrease the force F on the brake pads;
HOLD: FR(k+1) = FR(k) maintain a con-
stant force F on the brake pads;
INCREASE: Fr(k + 1) = Fr(k) + ∆Finc T
increase the force F on the brake pads.

The parameter ∆Fdec < 0 gives the decreasing
rate, ∆Finc > 0 gives the increasing rate, both
has to take into account the actuator dynamics.

The proposed control is based on a 7 state algo-
rithm. The state chart of the algorithm is shown
in Fig. 2. The basic working cycle is given by
the sequence of states (1)-(2)-(3)-(4)-(5)-(6)-(1).
A schematic representation of the basic work-
ing cycle is represented on the F -λ plane, see
Fig. 3 . This simplified representation is obtained
computing the force F form equation (3) when
Fx(λ, t) = F x(λ) and K̇brk = 0. For a constant
value of ω̇ = a the curve F (λ, a) has the same
shape of the curve F x(λ), moreover if a2 > a1 then
F (λ, a2) < F (λ, a1) consequently any acceleration
ω̇ defines an unique curve F (λ, ω̇) that does not
intersect any other F (λ, ω̇) curve. For any ω̇ the
peak of the curve F (λ, ω̇) happens for λ = λopt.

The description of the 7 states is the following
(the events within each state are checked following
the given sequence; for some states, a simple
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Fig. 3. Basic working cycle on the F -λ plane.

initialization assignment is executed once when
the algorithm enters the state):

(0) Control action: normal braking.
Operations:
if “emergency brake” then next state = (1).
Description: The ABS control is not active.
If a “emergency brake” is detected the ABS
control is activated. The activation mode
does not affect the behaviour of the proposed
control and it is out of the scope of the paper.

(1) Control action: DECREASE
Events:

- if ω̇ ≥ ω̇p then next state = (2).
Description: This control action is estab-
lished as soon as the wheel operating point
is supposed to be in the unstable region or
when the wheel is locked. By decreasing the
force on the brake pads, the term Re Fx(λ, t)
will become dominant in equation (3) and the
wheel acceleration will become positive.

(2) Control action: HOLD
Events:

- if ω = 0 then next state = (1).
- if F is constant then next state = (3).

Description: The actuators are requested to
hold a constant value for F . Due to the actu-
ator dynamics, this state lasts until the force
F is detected to be constant.

(3) Control action: HOLD
Initialization: k0 := k
Events:

- if ω = 0 then next state = (1).
- if ω̇ ≤ ω̇n then next state = (6).
- if (k − k0) ≥ nh and ∆ω̇(k) ≤ 0 then

next state = (1). Case (e) of Fig 3.
Description: Actuators delay was compen-
sated while in state (2) or (5), therefore the
force F can be considered constant.
If (k − k0) ≥ nh the measure of ∆ω̇(k) can
be considered as reliable.
Property 3 is used to approximately detect
when λ > λopt. The two cases (d) and (e) of



Fig 3 are possible with respect to the sign of
∆ω̇(k). The second operation may be helpful
in case of abrupt changes of adhesion.

(4) Control command: INCREASE
Events:

- if ω̇ ≤ ω̇N then next state = (5).
Description: The INCREASE control action
is established as soon as the operating point
is supposed to be in the stable region. By in-
creasing the brake pressure, the term Kbrk F
will become dominant in equation (3) and the
wheel acceleration will become negative.

(5) Control command: HOLD
Initialization: k0 := k
Events:

- if ω = 0 then next state = (1).
- if F is constant then next state = (6).

Description: The same as state (2).

(6) Control action: HOLD
Initialization: k0 := k
Events:

- if ω = 0 then next state = (1).
- if ω̇ ≥ ω̇p then next state = (3).
- if (k − k0) ≥ nh and ∆ω̇(k) ≤ 0 then

next state = (1). Case (a) of Fig 3.
- if ω̇ > ω̇n then next state = (4). Case (c)

of Fig 3.
Description: Analog to state (3). Property 4
is used to approximately detect when λ <
λopt. The cases (a), (b) and (c) of Fig 3 are
possible. Case (a) corresponds to property 4.
In case (b) the HOLD control is kept since
λ > λopt and λ̇ < 0. Case (c) allows to re-
establish an acceleration lower than ω̇n. By
this way a sub-cycle (6)-(4)-(5)-(6) can arise
to make λ closer to λopt. The second condi-
tion may be helpful in case of abrupt changes
of adhesion.

5. SIMULATION RESULTS

To obtain reasonable simulation results the actu-
ator dynamics is the same as in (Krishnamurthy
et al., 2005). To verify the self-tuning properties,
braking on varying road conditions have been con-
sidered. Fig. 7 shows the two force-slip curves that
represent the tire behaviour in the two extreme
conditions. The transition between the two con-
ditions is obtained by modifying the coefficients
of equation (2) along the traveled distance. Due
to the speed and road condition variation, the
optimal slip λopt and the optimal wheel speed ωopt

are not constant. The control is activated when
the traveled distance is greater than 5m. The two
simulations described next consider a fading effect
that introduce a gain reduction of 1/3 along the
traveled distance. Simulation 1 has the sampling
time T = 2ms, nh =2, road condition dry-wet-dry
with abrupt adhesion variation. Simulation 2 has a
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greater sampling time T = 5ms, nh =2, road con-
dition dry-wet-dry with gradual variations. The
simulation results are shown from Fig. 4 to Fig. 10.

Both simulations allows to verify that it is possible
to track the optimal slip and the wheel speed
values by using the proposed control strategy. The
good tracking of the optimal slip ensures that the
braking force is always around its maximum. The
performances decay only at very low speed when
the wheel locks-up, this is due to the rapid slip
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variation at low speed due to equation (5). As
well known, the controllers based on acceleration
thresholds induce oscillations on the braking pres-
sure (see Fig. 10), the average increase (especially
in the last 15m) of the braking force is the conse-
quence of the fading effect.

6. CONCLUSIONS

A self-tuning ABS control electromechanical brak-
ing systems has been proposed. The paper has
shown that it is possible to track the optimal
slip value by measuring only the wheel speed and
estimating the wheel acceleration. As shown in
the simulation studies, the proposed control strat-
egy is almost hardware independent, robust with
parameters variations and takes into account the
dynamics of the actuators.
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