
The POG Technique for Modeling Planetary Gears
and Hybrid Automotive Systems

Roberto Zanasi
Information Engineering Department

University of Modena e Reggio Emilia
Via Vignolese 905

41100 Modena, Italy
roberto.zanasi@unimore.it

Federica Grossi
Information Engineering Department

University of Modena e Reggio Emilia
Via Vignolese 905

41100 Modena, Italy
federica.grossi@unimore.it

Abstract—In this paper the Power-Oriented Graphs (POG)
technique is used for modeling planetary gears and hybrid
automotive systems. Some basic properties of the POG technique
are firstly given. An extended dynamic model of a planetary gear
with internal elasticity is presented. Then a POG congruent state
space transformation is used to transform and reduce the system
when the elasticities or the inertias go to zero. The obtained
reduced model is used as central element of an hybrid automotive
power structure (endothermic engine, multi-phase synchronous
motor and vehicle dynamics). Simulation results of the modeled
hybrid system ends the paper.

I. I NTRODUCTION

Nowadays, the planetary gears are key elements for the
design of new hybrid power structures in the automotive area.
In this paper, some detailed dynamic models of a planetary
gear and an hybrid automotive system are given using the
Power-Oriented Graphs (POG) technique. This technique al-
lows to graphically describes the dynamic model of any type
of physical system putting in evidence the powers which flow
within the modeled systems. The POG schemes are easy to
use, easy to understand and can be directly implemented in
Simulink. The paper is organized as follows: Sec. II describes
the basic properties of the POG modeling technique. Sec. III
and Sec. IV show, respectively, the POG dynamic models of
full and reduced planetary gears, and of an hybrid automotive
power structure composed by an endothermic engine, a multi-
phase synchronous motor and the vehicle dynamics. Finally,
in Sec. V some simulation results are reported.

II. POWER-ORIENTED GRAPHS BASIC PRINCIPLES

The Power-Oriented Graphs technique, see [1] and [2],
is suitable for modeling physical systems. The POG block
schemes are normal block diagrams combined with a particular
modular structure essentially based on the use of the two
blocks shown in Fig. 1.a and Fig. 1.b: theelaboration block
(e.b.) stores and/or dissipates energy (i.e. springs, masses,
dampers, capacities, inductances, resistances, etc.); the con-
nection block(c.b.) redistributes the power within the system
without storing nor dissipating energy (i.e. any type of gear
reduction, transformers, etc.). The e.b. and the c.b. are suitable
for representing both scalar and vectorial systems. In the
vectorial case,G(s) and K are matrices:G(s) is always a
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Figure 1. POG basic blocks and variables: a)elaboration block; b) connection
block; c) across and through variables.
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Figure 2. POG representations of Physical Elements (PE): a) connected in
series (inputsve1, ve2); b) connected in parallel (inputsvf1, vf2).

square matrix composed by positive real transfer functions;
matrixK can also be rectangular. The circle present in the e.b.
is a summation element and the black spot represents a minus
sign that multiplies the entering variable. The main feature of
the Power-Oriented Graphs is to keep a direct correspondence
between the dashed sections of the graphs and real power
sections of the modeled systems: the scalar productxTy of the
two power vectorsx andy involved in each dashed line of a
power-oriented graph, see Fig. 1, has the physical meaning of
the power flowing through that particular section. The Bond
Graphs technique, see [3] and [4], is based on the same idea,
but it uses a different and specific graphical representation.
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Figure 3. POG modeling of an electrical RC circuit.
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Figure 4. POG block scheme of a generic dynamic system.

The main energetic domains encountered in modeling phys-
ical systems are the electrical, the mechanical (translational
and rotational) and the hydraulic, see Fig. 1.c. Each energetic
domain is characterized by twopower variables: an across-
variable ve defined between two points (i.e. the voltageV ,
the velocity ẋ, etc.), and athrough-variablevf defined in
each point of the space (i.e. the currentI, the force F ,
etc.). Each Physical Element (PE) interacts with the external
world through the power sections associated to its terminals.
A Physical Element is connectedin serieswhen its terminals
share the same through-variablevf : see the physical element
and the corresponding POG scheme in Fig. 2.a. A Physical
Element is connectedin parallel when its terminals share the
same across-variableve: see the physical element and the POG
scheme in Fig. 2.b. An example of POG modeling is shown in
Fig. 3 where a C-parallel element is connected with an R-series
element. There is a direct correspondence between physical
power sections and dashed sections in the POG model. Note:
the summation elements present in the elaboration blocks
are a mathematical description of the current and voltage
Kirchhoff’s laws applied to the considered electrical system.

Another important property of the POG technique is the
direct correspondence between the POG schemes and the
corresponding state space dynamic equations. For example,
the POG scheme shown in Fig. 4 can be represented by
the state space equations (1) where theenergy matrixL is
symmetric and positive definite:L = LT > 0. It can be easily
shown that whenD = 0 it follows that C = BT. When an
eigenvalue of matrixL tends to zero (or to infinity), system
(1) degenerates towards a lower dimension dynamic system. In
this case, the dynamic model of the “reduced” system, see (2),
can be directly obtained from (1) using a simple “congruent”
transformationx = Tz where (if T is constant)L = TTLT,
A = TTAT, B = TTB, C = CT and D = D. The POG

u

y

� -

D-1

6

6

- �� �C

- B-- �
?
1
s

?
L-1

?
x

� -

�

A

6

6

-

{
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Figure 5. POG block scheme of the input-output inverted system.
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Figure 6. Planetary gear and related parameters.

scheme of Fig. 4 can also be easily input-output inverted, both
graphically and mathematically, as shown in Fig. 5. In this case
L̃=L, Ã=A+BD-1C, B̃=BD-1, C̃=−D-1C and D̃=D-1

are the matrices of the inverted system (3).

III. POG MODELING OF A PLANETARY GEAR

Let us consider the planetary gear shown in Fig. 6. The main
parameters of the system are:rs andrp are the sun and planet
radii; Js, bs, Jc, bc, Jr andbr are the inertia and linear friction
coefficients of the sun, carrier and ring, respectively;Ksc, dsc,
Kcr and dcr are the stiffness and friction coefficients of the
sun-carrier and carrier-ring elastic elements, respectively. The
extended POG dynamic model of the considered planetary
gear is shown in the upper part of Fig. 7: the carrier, the
planets and the ring interact each other through the two elastic
elementsKcr andKsc. The corresponding state space dynamic
equations are shown in lower part of Fig. 7:

L ẋ = −Ax + Bu, y = B
T
x (5)

The POG linear systems described in form (5) always satisfy
the following properties:
1) the energyEs stored in the system and the dissipating power
Pd are quadratic functions of matricesL andAs, respectively:

Es =
1

2
xT Lx, Pd = xT As x

whereAs = (A + A
T
)/2 is the symmetric part of thepower

matrix A. The skew-symmetric partAw = (A − A
T
)/2 of
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Figure 7. The POG block diagram and the POG state space equations of the considered planetary gear: the sun, the planets-carrier and the ring interact
through elastic elements. The considered inputs are:τs, τc andτr .

matrix A represents the power redistribution within the sys-
tem. One can easily verify that all the dissipating parameters
of the system appear only in matrixAs, while matrixAw is
completely characterized by all the connection parameters;
2) all the loops of the POG schemesalways contain an “odd”
number of signs “−” (i.e. the black spots) in the summation
blocks of the loop;
3) the direction of the power flowing through a section is
positive if an “even” number of signs “−” is present along
all the pathswhich link the input and the output of the section.
Note, for example, that in Fig. 7 the power is entering the
system in both sections2 and 3 .

A. Reduced inertial model

For certain applications the POG model of Fig. 7 can be too
much detailed. In these cases it can be of interest to find the
reduced model when, for example, the stiffness coefficients
Kcr and Ksc tend to infinity. Applying to system (5) the
following congruent transformation:

x = T1 x, where T1 =
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0 0 0 0 0 1
0 0 1 0 0 0
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0 0 0 1 0 0











.

one obtains the following transformed system:




J1 0 0
0 J20
0 0 0





︸ ︷︷ ︸

L





ẋ1
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u (6)

wherex = TT
1 x, L = TT

1LT1, B = TT
1 B, A = TT

1AT1,
y = BT x and:

x1 =
[
ωs

ωc

]

, x2 =
[
ωp

ωr

]

, x3 =
[
Fcr

Fsc

]

, J1 =
[
Js 0

0 Jc

]

, J2 =
[
Jp 0

0 Jr

]

,

B1 =
[
1 0 0

0 1 0

]

, B2 =
[
0 0 0

0 0 1

]

, A11 =
[
−bs−r2

sdsc r2
sdsc

r2
sdsc −bc−r2

sdsc−dcrr2
r

]

,

A12=
[

−rsdscrp 0

rsdscrp−dcrrprr dcrr2
r

]

,A13=
[

0 −rs

−rr rs

]

,A31=
[

0 rr

rs −rs

]

,

A21 =
[
−rsdscrp rsdscrp−dcrrprr

0 dcrr2
r

]

, A23 =
[
−rp−rp

rr 0

]

,

A22 =
[
−bp−dscr2

p−dcrr2
p dcrrprr

dcrrprr −br−dcrr2
r

]

, A32 =
[

rp −rr

rp 0

]

.

The last equation of system (6) shows an algebraic relation
between the state variables:A31 x1 + A32 x2 = 0. Since
matrix A32 is invertible, vectorx2 can be expressed as a
function of vectorx1:

x2 =

[
ωp

ωr

]

=−A-1
32 A31 x1 =

[

−
rs

rp

rs

rp

−
rs

rr
1+ rs

rr

] [
ωs

ωc

]

Applying to system (6) the following “rectangular” and “con-
gruent” state space transformation:

x = T2 x1, where T2 =
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0
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1 0
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−
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−
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rr
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0 0
0 0











one obtains the following second order transformed and re-
duced system:

Lr ẋ1 = −Ar x1 + Br u, y = BT
rx1, (7)
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the reduced (magenta dashed line) model of the planetary gear.
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 .

Note: the possibility of using a “rectangular” matrixT2 for
transforming and reducing a dynamical system is a “spe-
cific characteristics” of the POG technique and it holds
only for system described in the POG form (1). A sim-
ulative comparison between the extended model (4) of
the planetary gear and the reduced model (7) is shown
in Fig. 8. The parameters used in simulation are (SI
units): sun parameters[Js, bs, rs] = [0.049, 4.946, 0.102];
ring parameters[Jr, br, rr] = [2.180, 218.02, 0.248]; car-
rier parameters[Jc, bc] = [0.929, 92.89]; planet parame-
ters [Jp, bp, rp] = [0.081, 8.123, 0.073]; stiffness parame-
ters [Ksc, dsc] = [Kcr, dcr] = [107, 10]; initial conditions
[ωs(0), ωc(0), ωr(0)] = [0.1, −0.2, −0.323] rad/s; constant
external torques[τs, τc, τr] = [0, 4, 0] Nm.

With different choices of matrixT1 it is possible to obtain
different but equivalent reduced systems, similar to (7), with
different state vectorsx1, for examplex1 =

[
ωs, ωr

]T
, x1 =

[
ωr, ωc

]T
, etc.

B. Reduced elastic model

Using the POG reduction technique it is also possible to
obtain from (4) the reduced elastic model when inertiasJs,
Jc and Jr go to zero. Applying to system (5) the following
congruent transformation:

x = T3 z, where T3 =











0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1











.

and using the constraintJs = Jc = Jr = 0, one obtains the
following transformed system:
[
L1 0
0 0

]

︸ ︷︷ ︸

L

[
ż1

ż2
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u, y = Cz + Du,

(8)
wherez = TT

1 x, L = TT
3LT3, A = TT

3AT3, B = TT
3 B,

C = [C1, C2] = BT = [BT
1, BT

2], D = 0 and where:
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0 rr −rr

]

, B2 =

[
1 0 0

0 1 0
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]

,

A21 =

[
−rs −rsdscrp 0

rs rsdscrp − rprrdcr −rr

0 rprrdcr rr

]

, D=

[
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,

A22 =
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−bs − r2

sdsc r2
sdsc 0

r2
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0 r2
rdcr −br − r2

rdcr

]

.

The last equation of system (8) shows the following algebraic
relation between the state and input variables:

A21 z1 + A22 z2 + B2 u = 0

Since matrixA22 is invertible, vectorz2 can be expressed as:

z2 = −A-1
22A21 z1 − A-1

22B2 u

Applying the following rectangular transformation:

z =

[

I2

−A-1
22 A21

]

︸ ︷︷ ︸

Tz

z1 +

[

0

−A-1
22 B2

]

︸ ︷︷ ︸

Tu

u

to system (8) (i.e.L ż = −Az+Bu andy = Cz+Du), one
obtains the following reduced system (note thatLTu = 0):

{

TT
zLTz ż1 = −TT

zATz z1 + TT
z(B − ATu)u

y = CTz z1 + (D + CTu)u

that in compact form is:

Le ż1 = −Ae z1 + Be u, y = CT
ez1 + DT

eu (10)

where matricesLe, Ae, Be, Ce and De have the following
structure:

Le = TT
zLTz = L1,

−Ae = −TT
zATz = A11 − A12 A-1

22 A21,

Be = TT
z(B − ATu) = B1 − A12 A-1

22 B2,

Ce = CTz = C1 − C2 A-1
22 A21,

De = D + CTu = D − C2 A-1
22 B2.
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ũ




τs

τc

τr





︸ ︷︷ ︸

ỹ
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Figure 9. POG block diagram and POG state space equations of the reduced planetary gear whenJs = Jc = Jr = 0 and the velocities are the inputs.

Since matrixDe is invertible, system (10) can be input-output
inverted using the relations shown in Fig. 5. The state space
equations̃Le

˙̃x = −Ãe x̃+ B̃e ũ andỹ = C̃e x̃+ D̃e ũ of the
inverted-reduced system are shown in (9) in the lower part of
Fig. 9 where:

L̃e =Le, Ãe =Ae+BeD
-1
eCe, B̃e =BeD

-1
e , C̃e =−D-1

eCe,

x̃=z1, ũ=y=[ωs, ωc, ωr]
T, ỹ=u=[τs, τc, τr]

T, D̃e =D-1
e .

A POG graphical representation of this inverted-reduced sys-
tem is shown in the upper part of Fig. 9.

C. Reduced dissipative models

A first dissipative static model of the planetary gear can be
obtained from the inertial model (7) whenJs = Jc = Jp =
Jr = 0, that is whenLr = 0:

x1 = A-1
r Br u, → y = Ds1 u = BT

r A-1
r Br u. (11)

Matrix Ds1 is singular and therefore all the torque vectors
u = [τs, τc, τr]

T which belong to the kernel of matrixBr, i.e.
which are parallel to vectork1 = [rs, −rr−rs, rr]

T, do not
influence the output velocitiesy = [ωs, ωc, ωr]

T. Moreover,

all the velocitiesy obtained from (11) are perpendicular to
vectork1, i.e. the vectory satisfies the relation:

kT
1 y = 0 ↔ rs ωs − (rr+rs)ωc + rr ωr = 0. (12)

A second dissipative static model can be obtained from the
elastic model (10) whenKsc = Ksc = ∞ andJp = 0, that is
when L̃e = 0:

Ãe x̃ = B̃e ũ, ỹ = C̃e x̃ + D̃e ũ. (13)

In this case a solution in closed form does not exists because
matrix Ãe is singular. One can easily verify that system (13)
has a solution only when the input vectorũ = [ωs, ωc, ωr]

T

is perpendicular to vectork1, i.e. whenkT
1 ũ = kT

1 y = 0 as
shown in (12). So, the static dissipative model (13) cannot be
used in practice because the input vectorũ is “constrained”.

IV. POG MODELING OF AN HYBRID AUTOMOTIVE SYSTEM

It is well known, see for example [5], that the planetary
gear is a key element for modeling hybrid automotive power
structures. The hybrid structure shown in Fig. 10 includes an
internal combustion engine (ICE), a multi-phase Permanent
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Magnet Synchronous Machine (PMSM) and the vehicle. The
planetary gear is the element connecting the two motors and
the driving wheels. The ICE is rigidly connected to the Carrier
(C), the PMSM is connected to the Sun (S) and the vehicle
driving axle is connected to the Ring (R). This hybrid system
can be dynamically described by the “high level” POG block
scheme shown in Fig. 11. Note that the power sections1 -
5 shown in Fig. 11 correspond to the physical power sections
indicated in Fig. 10. The POG block “Control” of Fig. 11
represents the electric control of the PMSM. The POG model
of the synchronous machine present between sections1 and
2 is given in Fig. 12, see [6] and [7]. The POG model of
the Planetary Gear present between sections2 and 3 is
the elastic model given in Fig. 9. In3 the planetary gear is
connected to the driving shaft of the vehicle. The dynamics of
the vehicle is described by the POG model present between
sections3 and 4 : the details of this POG model can be found
in [8]. Finally, the last POG block describes the resistanceof
the airFr as a function of the vehicle velocitẏxv.

V. SIMULATION OF THE HYBRID POWER STRUCTURE

The hybrid automotive system shown in Fig. 10 and Fig. 11
has been implemented in Matlab/Simulink. The obtained
Simulink block scheme is shown in Fig. 13. All subsystems
have been modeled with the POG technique and in particular
the vehicle in the right part of the scheme is a bicycle model
of a car that includes the tire-road elastic interaction, see [8].

The “start-and-stop” simulation results reported in
Fig. 14÷18 have been obtained with the ICE switched off,
i.e. ωc = 0, and controlling the multi-phase electric motor in
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order to force to the vehicle the start-and-stop longitudinal
movement described by the trapezoidal velocity shapeẋd

shown in Fig. 14 (the red dashed line). The velocityẋv

of the vehicle follows the desired velocitẏxd with a small
delay because of the elastic horizontal slipping of the tires
on the ground. Main parameters of the vehicle:Mv = 1272
kg is the mass of the vehicle;Jw = 3.459 kg m2 is the
inertia of the wheels;Rw = 32.55 cm is the radius of the
wheels; Kt = 360000 N/m is the longitudinal stiffness of
the tires. The angular velocities of the planetary gear are
shown in Fig. 15: sunωs (red, solid), carrierωc (blue,
dashed) and ringωr (black, dash-dotted). Parameters of the
planetary gear:rs = 10.2 cm andrr = 24.8 cm are the radii;
Ksc = Kcr = 107 N/m anddsc = dcr = 3003 N s/m are the
stiffness and friction coefficients;Jp = 0.0812 kg m2 is the
planet inertia;[bp, bs, bc, br] = [0.243, 0.148, 2.787, 6.541]
N m/rad are the linear friction coefficients. The torques acting
on the wheels of the planetary gear are shown in Fig. 16: sun
τs (red, solid), carrierτc (blue, dashed) and ringτr (black,
dash-dotted). The voltagesVe and the currentsIe of the
m-phases electrical motor (m = 5) are shown in Fig. 17.
Parameters of the multi-phase electric motor: the shape of
the rotor flux is sinusoidal; them phases are star connected;
Rs = 1 Ω and Ls = 0.01 H are the resistance and self
inductance coefficient of the stator phases;Ms0 = 0.008
H is the maximum value of mutual inductance between
stator phases;ϕc = 6 W is the maximum value of the rotor
flux chained with the stator phases;Jm = 0.529 kg m2 and
bm = 0.08 N m s/rad are the inertia and the linear friction
coefficient of the rotor. The main powers flowing through
the sections of the system are shown in Fig. 18:P1 (red,
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plain) is the power in section 1 flowing from the control
unit towards the electric motor;P2 (blue, dashed) is the
mechanical power in section2 flowing from the electrical
motor towards the planetary gear;P3 (black, dash-dotted) is
the mechanical power in section3 which flows towards the
vehicle. Whent ∈ [0, 2] s the vehicle accelerates and part
of the power flowing towards the vehicle dissipates within
the electric motor (i.e. the difference between the solid and
dashed lines) and within the planetary gear (i.e. the difference
between the dashed and dash-dotted lines). Whent ∈ [4, 7] s
the vehicle decelerates and a consistent amount of mechanical
power flows from the vehicle towards the electric motor: in
this phase the motor acts as a generator, see Fig. 18.

VI. CONCLUSIONS

In this paper a planetary gear has been modeled with differ-
ent level of details using the Power-Oriented Graphs (POG)
technique. POG congruent state space transformations have
been used to obtain the reduced models when the elasticities
and/or the inertias of the system go to zero. A full hybrid
automotive power system (endothermic engine, multi-phase
synchronous motor, planetary gear and vehicle dynamics) has
been modeled using POG. The final simulations results clearly
show that the POG technique is also suitable to easily, clearly
and precisely model complex dynamic systems.
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