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Abstract—In the paper, new discrete inversion formulas  7(t) e(t)
suitable for the design of lead and lag discrete compensators
in the frequency domain are presented. These formulas can
be very useful for teaching in Automatic Control courses. The
links of these discrete formulas with the continuous inversion
formulas are deeply investigated. A simple graphical procedure
for the design of discrete compensators on the Nyquist plane is
also presented. Finally, some numerical examples illustrate the

presented results.

C(s)

Fig. 1. The considered block scheme for the continuous time. cas

. INTRODUCTION

The design of lead and lag compensators for linear systems
can be done in a lot of different ways. Many different

methods can be found in the text books of AUtOmati(FunctionC(s) represents a lead compensatoy if- 1, a lag

Control: design using Bode, Nyquist or Nichols diagramsgompensator ify < 1. The zeros, and the poles, of the

root locus, analytic design, use of Diophantine equation@ompensatog(s) are

state space approach, etc. In this paper a new method for the 1 1

design of lead and lag discrete compensators based on the Sg = ——, = (2)

use of simple discrete inversion formulas is presented. The n

presented design method is particularly interesting fache The maximum (or minimum) phass,, of compensato€’(s)

ing purposes because it has a simple graphical interpyatati B oy

on the Nyquist plane. ¥m = arcsim |
The inversion formulas presented in this paper are similar

to other formulas that can be found in literature (see for reached fow = wy, where

example [1], [2], [3] and [4]), but in this case the formulas o — 1 3)

are simpler, the graphical interpretation on the Nyquiahpl RV

is more direct and the use of these formulas is suitable alel(he Bode magnitude and phase plots of compensate)

for the discrete-time case. _ __when (using Matlab notationy = [0.2 : 0.2 : 1, 1./[0.2 :
The paper is organized as follows. In Section Il the invery o . 1]] andw, = 1 are shown in Fig. 2.

siop formulas: for the cpntinuous tim.e case anq the related For the continuous time case the design problem can often
main properties are briefly summarized and discussed. B formulated as follows.

Section Il the “discrete” inversion formulas are presente

the related mathematical result is proved, the shape B¥esign Problem (continuous time)find the parameters;

the admissible domains is investigated and many remarRgd 72 of compensator (1) such that

the high frequency gain of functio@'(s):
v= lim C(s) =

§—00

. 1
= lim C(s) =1, n
70 = lim C(s) ™

S, = ——
P T

T — T2
T+ T2

= arcsin

stressing the links between the discrete and the continuous ] 14+ jwn )

: : ; : Cljw) = ———=M¢e¥ (4)
inversion formulas are given. Some numerical examples and 1+ jwr

a brief conclusion end the paper. where M and ¢ are the magnitude and the phase desired at

I[I. THE CONTINUOUS TIME CASE frequencyw.

Let us consider the continuous time system shown ifhyersion formulas (continuous time) the continuous time
Fig. 1 whereG(s) is the controlled system and(s) is the  gesign problem is solved by using the followiitg/ersion

compensator to be designed: formulas
1+7s
C(s) = 1) 1
L+7as M —cosp _cosp— 37 )
Let 7o and~ denote, respectively, the steady state gain and =y singp 7= wsin g

R. Zanasi is with Faculty of Engineering, DIl - Information gineering

Department, University of Modena e Reggio Emilia, Via Vigrede905,
41100 Modena, Italy, e-mailobert 0. zanasi @mni nore.it.

R. Morselli is with CNH lItalia S.p.A., V.le delle Nazioni 5541100
Modena, Italy, e-mait:i ccar do. norsel | i @nh. com

This solution follows directly from the previous works [5],
[6] and [7].

From (5) one can easily verify that the parametgrand
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Fig. 2. Bode magnitude and phase plots of compensate) when~y =

[02:0.2:1,1./[0.2:0.2: 1] andwn, = 1. Fig. 4. Nyquist plane: admissible domains for the design ofrapeEnsator

¢(s) which moves the pointsl; and Az into point B.

D,
. —Pz\ just substitutingM with 1/M and ¢ with —:
e v /\/\\\ N N 1
_ / 7 NN M — cosp _cosp— g7
M eI¥ / s NN _— = — - =Ty
- NN w sin @ w s
’ I AN | M-
% o - N 1 p——¢
//D/ . 1 U In the same way, can be obtained froms.
Py 1 . . .
SN J Remark: the two domaingD; and D, arereciprocal that is
the reciprocal of each poin®; belonging toD; belongs to
D,, and vice-versa:

Dy = (Dy)~' « (VP € Dy — P € Dy)
Dy = (D1)' < (VP € Dy — Pyt € Dy)

Fig. 3. Admissible domain®; and D> when7; > 0, 72 > 0.

Remark: due to the reciprocity property, the domain is

the set of all the points which can be transformed into point
14 70 by using alag compensator, and the domélp, is

the set of all the points which can be transformed into point
1+ 70 by using alead compensator.

are both positive only whetM, ¢) € D; U D,, where the
domainsD; andD,, shown in Fig. 3, are defined as follows:

Dy = (6)

()

{O§<p<g, M’cosgozl}

Graphical design procedure The use of the inversion
formulas (5) is particularly useful if the design procedure
is graphically performed on the Nyquist plane. Let us refer,
for example, to the Nyquist diagrafd(jw) of systemG(s)
shown in Fig. 4. Chosen; < 1 and~, > 1, let us design
the compensatof’(s) such that:

Dy = {—g<ap§0,0<M§cosap}

For all the pointsP, = M €% € D, the inversion formulas
(5) provider; > » > 0, v > 1 and the obtained function
C(s) is alead compensatofor all the points?, = M e/¢ €

D; the inversion formulas provide, > 71 > 0, v < 1 and
the obtained”(s) is alag compensator

1<y <72 8)

Remark: the parametety corresponding to point®; € D,

and P, € D, can also be obtained graphically by using th%ompensato(]

geometric construction shown in Fig. 3.

Remark: the two inversion formulas (5) aresciprocal in
the sense that one formula can be obtained from the othlerom pointB one can easily determine poinBy = % and

in order to properly bound the high frequency gainof

(s). A point B of the complex plane where
to move functionG(jw) can be easily determined on the
basis of the given phase margin or gain margin specifications
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Fig. 6. Step responses of the two systaf(s) andG.(s) = C1(s)G(s)
controlled in closed loop.
Fig. 5. Design of a lead compensator on the Nyquist plane. T én Mn, Yn
Ca(z) HG(z) -
By = 732, see Fig. 4. The grey half circle with the diameter
coincident with segmenB Bs is the region of all the points
Fig. 7. The considered block scheme for the discrete time case.

A, that can be moved irB by using alead compensator

while the grey half circle with the diameter coincident with

segmentB B; is the region of all the pointsl; that can be
The parameterd/ andy to be used in (9) are the following:

M

L ¢ =pp—pa=45.1°

moved inB by using alag compensatorPoints A; and A,
can be mapped i® but without satisfying the constraint (8).
M=—"=1.

M, 859,

Chosen a generic poist = G(jwa) belonging to one of the
admissible domains, the parameter&ndr, of compensator
C(s) that moves pointd = M4 e’¥4 in B = Mpel¥E can  SubstitutingM, ¢ andw = w4 in (5) one obtains; = 0.806
be obtained from (5) by using the following parameters: andm, = 0.117, that is:

 (140.8065)
Cils) = Troa17s)

Mp
M = — = — =
MA7 ¥ ¥B PA, w wA (9)
Numerical example. Given the system: The step responses of the two systefis) and G.(s) =
95 C1(s)G(s) controlled in closed loop are shown in Fig. 6.
I1l. THE DISCRETE TIME CASE

¢ = TG 10)
let us design a lead compensator(s) which imposes a  For the discrete time case, let us refer to the block
phase margin\/, = 60° and with the gainy as small as Scheme of Fig. 7 wheré/G(z) is the discrete system to
possible. The design specificatidl, = 60° completely be controlled,Hy(s) is the zero-order hold:
defines the position of poinB = Mg e’¥5: 1_eTs
HG(z) = Z[Ho(s) G(s)], Hop(s) = —

op =1+ M, = 240°,
and Cy(z) is the compensator to be designed:

14 a(z—1)
Cal2) = 5= 1)

This particular structure has been chosen to have the steady
state gainy, = lim._,; Cy4(z) = 1 for compensatoC,(z).
o and the polez, of function Cy(z) are:
1
(11)

zpzl—ﬁ

Mp =1,
(10)

which must be crossed by the frequency resparggw) of

the compensated systef#.(s). The pointsA = G(jw) that
can be moved inB by using a lead compensator belong to

the grey admissible region shown in Fig. & < w < ws.
The point4d = G(jwa) = M ae/?4 which minimizes the pa-
rametery can be determined with the graphical constructioncrhe 76102

1

shown in Fig. 5 (note that = 1/|G|):
20 = 1- NE)
«

oA =194.9°  wy = 2.02.

M4 = 0.538,
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o : Inversion formulas (discrete time) the discrete time design
ﬁ | problem is solved by the followingwersion formulas
o
Frequencyw € [0, 7/T) 0 — 1 + M — cos g
Fig. 8. Bode magnitude and phase plot<5f(z) whenvy, = [0.2: 0.2 : 2 2s€ingp tan %
1,1/(0.2:0.2:1)], wpg = 1 andT = 0.3. (17)
1 cos p — ==
B = gt gy
. - 2 2sinyp tan -
The compensatot’,(z) is a minimum-phase systewnly

when|z| < 1 and|z,| < 1, that is when:
Proof. Let @, andw; denote the real and imaginary parts of

a > 0.5, B> 0.5. (12)  ectorei«T — 1
The frequency response of functidr(z) is obtained from - N
(10) whenz = /T andw € [0, 7] whereT is the discrete e —1=0, +ju; =wel?, (18)
sampling period. The high frequency gainof compensator
Cy(z) whenw = % is the following: where
. 2 — 1 wp = wcosp =coswl —1
_ wT . _ 19
9= Cale" Mg = Ca(-1) = 35— (13) % = @sing=snwT 19)

For w € [0, 7], the maximum (or minimum) phase angle

) One can easily verify, see Fig. 9, that the amplitudand
©ma Of function Cy(e«T) is: y fy 9 P

the phasep of vectorw ¢/¢ = ¢7“7 —1 can also be expressed

-1 — as follows:
Pmq = arcsin L = arcsin ﬂ . (14)
Ya+1 a+p8-1
59 wT 7w W 20
This valuey,,q is reached fotw = w4 W= asmeT, Pt (20)
Wng = 1 ccos 20 —a—p Substituting (18) in (16) one obtains the equation:
T 203 —a—pF+1
1 20+ 2 (15) 1+ a(@, + jo;)
= — 20T <p — T 2 — M(cose + jsinp).
T arccos [1 n zon . 1+ 8@, + jar) ( YTJ ®)

The magnitude and phase plots of the compens@idr)  Separating the real and the imaginary parts, one obtains the
whenvyg =[0.2:0.2:1,1/(0.2: 0.2 : 1)], wpg = 1 and  system:

T = 0.3 are shown in Fig. 8. For the discrete time case the

compensator design problem can be formulated as follows. 1+aw, = M[(l + B@,) cos o — Bw;sin @]

Design Problem (discrete time) find the parameters and aw; M[(1+ Bo,)sing + Bw; cos @]
8 of compensator (10) such that:
1+ a(evT —1)
where M and ¢ are the magnitude and the phase desired at |[M (w0, cosp—w;sing) —o,| [B]  [1—Mcosy
frequencyw. M (&, sinp+@;cosp) —@;| |a] | —Msing

which can be rewritten in a matrix form as a linear system

Cy(eeT) = Mel%, (16) to be solved with respect to the parameterand j:



The solutions of this system are the followings:

M (@, cosp—w;sinp) 1—M cos

M(w,sinp+w;cosp) —Msinp
M (0? + @2)sing

Re(s)

1—Mcosp —i,
—M sinp —W;

R ¥ i e T -1

After some mathematical manlpU|at|0nS' the solutiorsnd Fig. 10. Graphical correspondence betweeplane andz-plane due to

£ can be simplified as follows: the bilinear transformation.
0 — Wy sin @ + w; cos p — Mw;
w?sing Remark: substituting (21) in (13) one obtains:
— M, sin ¢ + M, cos p — w; 2a—1 7
— T 7 7 R 22
p M @2 sin ¢ 4= 20—1 K (e2)

from which, using relations (19) and simplifying, it folleyv that is, the high frequency gaip, of the discrete compen-
satorCy(z) obtained using inversion formulas (17) is equal

a = Msing __Sin@ +9) to the high frequency gain of the continuous compensator
w s C(s) obtained with formulas (5). Moreover, from (22) and

M sin(p — @) —sin @ (14) it follows that the maximum phase,,q of the discrete
p = M @sin compensato€;(z) obtained by using the inversion formulas

(17) is equal to maximum phase,, of the correspondent

Using relations (20) one obtains: continuous compensate?(s): ¢ma = @m.

N Msin(3 + <F) —sin(§ + <F + ¢) Remark: from (11), (12) and (21) it follows that, fob <
N 2 sin WQT sin ¢ w < %, the two parameters: and 3 are greater that 0.5

if and only ifthe two parameters, andr, are positive:

in(ZE 4+ «L _ p) — Lgin(Z 4+ «L
3 = sin(3 + 5 .“O)wTMsm(2+ 2) (@>05 8>05) < (>0, 7>0)
2 sin 4= sin ¢

This result is important because it proofs that in the comple
plane the set of all the poin8 = M e/% for which a > 0.5
M cos 2L — cos 2L cos g + sin L singp and 3 > 0.5 coincides with the set of all the points for

which can be rewritten as follows:

“ = 2 sm—T sin which 7, > 0 and» > 0, that is,the admissible domains
2 for the discrete inversion formulas (17) are equal to the
cos % cos @ — sm% sin p — L[cos(%) admissible domaing; and D, shown in Fig. 3 for the
g = 2 sin L sin ¢ continuous time inversion formulas (3)loreover, from (22)

o _ _ _ _ it follows that D; is the domain for whichCy(2) is a lag
Simplifying one obtains the discrete inversion formulag)(l compensator, whilé, is the domain for whichCy(2) is a

1 M — cos lead compensator.

@ T 3 2 sin ¢ tan - “’T Remark: the formulas (21) create a link between parameters
1 71, T2 and parameters, 3. Neverthelessy; andr, determine
3 = 1. % the position of poles, and zeros, of function C(s) on the

2 2singp tan % s-plane, whilea and 8 determine the position of pole,

and zeroz, of function Cy(z) on the z-plane. Taking into

Remark: these formulas can also be rewritten in the follow-
account relations (2), (11) and (21), one obtains the fatigw

ing form:
9 biunivocal correspondence betweeiplane and:z-plane:

1 wT1 T

a = —H———0 w z—1 1+ 2 tan <~
2 2tan &5 s=— |2 " & — w2
1 (21) tan% z+1 —ftanﬂ

W T2
g = ) + 9 tan @ This correspondence is the well knowilinear transforma-
2 tion with prewarping see Fig. 10.

where 7y and 7, are the parameters obtained from theNumerical example Let us refer to the same syste#fs) =
continuous time inversion formulas (5) when the same desig@s/(s(s + 1)(s + 10)) considered in the previous numerical
parameters\/, ¢ andw are used. example and let us try to design a discrete lead compensator
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Fig. 11. Design of a lead discrete compensai(z) on the Nyquist Fig. 12.

plane wherl’ — 0.15 s Step responses of the considered systems contiiallelbsed

loop. Sampling periodI’ = 0.15 s.

Ca(z) which imposes a phase margil,, = 60° when  fom ¢y(s) by using the bilinear correspondence between the
T = 0.15 s. The discrete systefiG(z) to be controlled  gnq» complex variables:

is the following:

1.762 z — 1.462
HG(z) - O.8572% + 26,66 +4.250)10° Co(2) = Ci(s)ls=2 =22 = 1334 —0.084"
2% —2.0842% +1.276z — 0.192 From Fig. 12 it is evident that with the discrete inversion
The design specificatiod/,, = 60° is unchanged, so point formulas (17) one obtains a discrete time behaviour very
B = Mpel¥®® is the same used in the previous casesimilar to the one obtained in the continuous time case.

Mp =1, op =n+ M, = 240°. PointA = HG(e/*2T) =

Mae??4 is now chosen on the Nyquist diagram of function IV. CONCLUSIONS

HG(z) whenw = wa: The discrete inversion formulas presented in this paper are
o particularly suitable for the design of discrete compenrsat
Ma=05361, @4 =186.2° wq=2.02. in the frequency domain. Due to the simplicity of the

From Fig. 11 one can easily verify that poidtbelongs to formulas and the clarity of the related graphical design
the admissible domain for a discrete lead compensator (tREocedure, we think that these formulas can be very useful
dotted half circle shown in Fig. 11). Parametéis and o  @lso for teaching.
are now the following: ACKNOWLEDGMENTS
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