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Abstract— In the paper, new discrete inversion formulas
suitable for the design of lead and lag discrete compensators
in the frequency domain are presented. These formulas can
be very useful for teaching in Automatic Control courses. The
links of these discrete formulas with the continuous inversion
formulas are deeply investigated. A simple graphical procedure
for the design of discrete compensators on the Nyquist plane is
also presented. Finally, some numerical examples illustrate the
presented results.

I. INTRODUCTION

The design of lead and lag compensators for linear systems
can be done in a lot of different ways. Many different
methods can be found in the text books of Automatic
Control: design using Bode, Nyquist or Nichols diagrams,
root locus, analytic design, use of Diophantine equations,
state space approach, etc. In this paper a new method for the
design of lead and lag discrete compensators based on the
use of simple discrete inversion formulas is presented. The
presented design method is particularly interesting for teach-
ing purposes because it has a simple graphical interpretation
on the Nyquist plane.

The inversion formulas presented in this paper are similar
to other formulas that can be found in literature (see for
example [1], [2], [3] and [4]), but in this case the formulas
are simpler, the graphical interpretation on the Nyquist plane
is more direct and the use of these formulas is suitable also
for the discrete-time case.

The paper is organized as follows. In Section II the inver-
sion formulas for the continuous time case and the related
main properties are briefly summarized and discussed. In
Section III the “discrete” inversion formulas are presented,
the related mathematical result is proved, the shape of
the admissible domains is investigated and many remarks
stressing the links between the discrete and the continuous
inversion formulas are given. Some numerical examples and
a brief conclusion end the paper.

II. THE CONTINUOUS TIME CASE

Let us consider the continuous time system shown in
Fig. 1 whereG(s) is the controlled system andC(s) is the
compensator to be designed:

C(s) =
1 + τ1 s

1 + τ2 s
(1)

Let γ0 andγ denote, respectively, the steady state gain and
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Fig. 1. The considered block scheme for the continuous time case.

the high frequency gain of functionC(s):

γ0 = lim
s→0

C(s) = 1, γ = lim
s→∞

C(s) =
τ1

τ2

FunctionC(s) represents a lead compensator ifγ > 1, a lag
compensator ifγ < 1. The zeros0 and the polesp of the
compensatorC(s) are

s0 = − 1

τ1
, sp = − 1

τ2
(2)

The maximum (or minimum) phaseϕm of compensatorC(s)

ϕm = arcsin
γ − 1

γ + 1
= arcsin

τ1 − τ2

τ1 + τ2

is reached forω = ωn where

ωn =
1√
τ1τ2

(3)

The Bode magnitude and phase plots of compensatorC(s)
when (using Matlab notation)γ = [0.2 : 0.2 : 1, 1./[0.2 :
0.2 : 1]] andωn = 1 are shown in Fig. 2.

For the continuous time case the design problem can often
be formulated as follows.

Design Problem (continuous time): find the parametersτ1

and τ2 of compensator (1) such that

C(jω) =
1 + j ωτ1

1 + j ωτ2
= M ejϕ (4)

whereM andϕ are the magnitude and the phase desired at
frequencyω.

Inversion formulas (continuous time): the continuous time
design problem is solved by using the followinginversion
formulas:

τ1 =
M − cos ϕ

ω sinϕ
, τ2 =

cos ϕ − 1
M

ω sin ϕ
(5)

This solution follows directly from the previous works [5],
[6] and [7].

From (5) one can easily verify that the parametersτ1 andτ2
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Fig. 2. Bode magnitude and phase plots of compensatorC(s) whenγ =
[0.2 : 0.2 : 1, 1./[0.2 : 0.2 : 1]] andωn = 1.
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Fig. 3. Admissible domainsD1 andD2 whenτ1 > 0, τ2 > 0.

are both positive only when(M, ϕ) ∈ D1 ∪ D2, where the
domainsD1 andD2, shown in Fig. 3, are defined as follows:

D1 =
{

0 ≤ ϕ <
π

2
, M cos ϕ ≥ 1

}

(6)

D2 =
{

−π

2
< ϕ ≤ 0, 0 < M ≤ cos ϕ

}

(7)

For all the pointsP2 = M ejϕ ∈ D2 the inversion formulas
(5) provideτ1 > τ2 > 0, γ > 1 and the obtained function
C(s) is a lead compensator. For all the pointsP1 = M ejϕ ∈
D1 the inversion formulas provideτ2 > τ1 > 0, γ < 1 and
the obtainedC(s) is a lag compensator.

Remark: the parameterγ corresponding to pointsP1 ∈ D1

andP2 ∈ D2 can also be obtained graphically by using the
geometric construction shown in Fig. 3.

Remark: the two inversion formulas (5) arereciprocal, in
the sense that one formula can be obtained from the other

G(jω)

A1

Ā1

A2

Ā2

B

B2 = B
γ2

B1 = B
γ1

O

Fig. 4. Nyquist plane: admissible domains for the design of a compensator
c(s) which moves the pointsA1 andA2 into point B.

just substitutingM with 1/M andϕ with −ϕ:

M − cos ϕ

ω sin ϕ
︸ ︷︷ ︸

τ1
M→

1
M

ϕ→−ϕ

=
cos ϕ − 1

M

ω sinϕ
= τ2

In the same wayτ1 can be obtained fromτ2.

Remark: the two domainsD1 andD2 are reciprocal, that is
the reciprocal of each pointP1 belonging toD1 belongs to
D2, and vice-versa:

D1 = (D2)
−1 ↔ (∀P1 ∈ D1 → P−1

1 ∈ D2)

D2 = (D1)
−1 ↔ (∀P2 ∈ D2 → P−1

2 ∈ D1)

Remark: due to the reciprocity property, the domainD1 is
the set of all the points which can be transformed into point
1 + j 0 by using alag compensator, and the domainD2 is
the set of all the points which can be transformed into point
1 + j 0 by using alead compensator.

Graphical design procedure. The use of the inversion
formulas (5) is particularly useful if the design procedure
is graphically performed on the Nyquist plane. Let us refer,
for example, to the Nyquist diagramG(jω) of systemG(s)
shown in Fig. 4. Chosenγ1 < 1 and γ2 > 1, let us design
the compensatorC(s) such that:

γ1 < γ < γ2 (8)

in order to properly bound the high frequency gainγ of
compensatorC(s). A point B of the complex plane where
to move functionG(jω) can be easily determined on the
basis of the given phase margin or gain margin specifications.
From pointB one can easily determine pointsB1 = B

γ1
and
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Fig. 5. Design of a lead compensator on the Nyquist plane.

B2 = B
γ2

, see Fig. 4. The grey half circle with the diameter
coincident with segmentB B2 is the region of all the points
A2 that can be moved inB by using alead compensator,
while the grey half circle with the diameter coincident with
segmentB B1 is the region of all the pointsA1 that can be
moved inB by using alag compensator. PointsĀ1 andĀ2

can be mapped inB but without satisfying the constraint (8).
Chosen a generic pointA = G(jωA) belonging to one of the
admissible domains, the parametersτ1 andτ2 of compensator
C(s) that moves pointA = MA ejϕA in B = MB ejϕB can
be obtained from (5) by using the following parameters:

M =
MB

MA

, ϕ = ϕB − ϕA, ω = ωA (9)

Numerical example. Given the system:

G(s) =
25

s(s + 1)(s + 10)
,

let us design a lead compensatorC1(s) which imposes a
phase marginMϕ = 60o and with the gainγ as small as
possible. The design specificationMϕ = 60o completely
defines the position of pointB = MB ejϕB :

MB = 1, ϕB = π + Mϕ = 240o,

which must be crossed by the frequency responseGc(jω) of
the compensated systemGc(s). The pointsA = G(jω) that
can be moved inB by using a lead compensator belong to
the grey admissible region shown in Fig. 5:ω1 < ω < ω2.
The pointA = G(jωA) = MAejϕA which minimizes the pa-
rameterγ can be determined with the graphical construction
shown in Fig. 5 (note thatγ = 1/|G|):

MA = 0.538, ϕA = 194.9o, ωA = 2.02.

0 5 10 15
0

0.5

1
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Fig. 6. Step responses of the two systemsG(s) andGc(s) = C1(s)G(s)
controlled in closed loop.
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Fig. 7. The considered block scheme for the discrete time case.

The parametersM andϕ to be used in (9) are the following:

M =
MB

MA

= 1.859, ϕ = ϕB − ϕA = 45.1o.

SubstitutingM , ϕ andω = ωA in (5) one obtainsτ1 = 0.806
andτ2 = 0.117, that is:

C1(s) =
(1 + 0.806 s)

(1 + 0.117 s)
.

The step responses of the two systemsG(s) and Gc(s) =
C1(s)G(s) controlled in closed loop are shown in Fig. 6.

III. THE DISCRETE TIME CASE

For the discrete time case, let us refer to the block
scheme of Fig. 7 whereHG(z) is the discrete system to
be controlled,H0(s) is the zero-order hold:

HG(z) = Z[H0(s)G(s)], H0(s) =
1 − e−T s

s

andCd(z) is the compensator to be designed:

Cd(z) =
1 + α(z − 1)

1 + β(z − 1)
(10)

This particular structure has been chosen to have the steady-
state gainγ0 = limz→1 Cd(z) = 1 for compensatorCd(z).
The zeroz0 and the polezp of function Cd(z) are:

z0 = 1 − 1

α
, zp = 1 − 1

β
(11)
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Fig. 8. Bode magnitude and phase plots ofCd(z) whenγd = [0.2 : 0.2 :
1, 1/(0.2 : 0.2 : 1)], ωnd = 1 andT = 0.3.

The compensatorCd(z) is a minimum-phase systemonly
when |z0| < 1 and |zp| < 1, that is when:

α > 0.5, β > 0.5. (12)

The frequency response of functionCd(z) is obtained from
(10) whenz = ejω T andω ∈ [0, π

T
] whereT is the discrete

sampling period. The high frequency gainγd of compensator
Cd(z) whenω = π

T
is the following:

γd = Cd(e
jωT )ω= π

T
= Cd(−1) =

2α − 1

2β − 1
. (13)

For ω ∈ [0, π
T

], the maximum (or minimum) phase angle
ϕmd of function Cd(e

jωT ) is:

ϕmd = arcsin

[
γd−1

γd+1

]

= arcsin

[
α−β

α+β−1

]

. (14)

This valueϕmd is reached forω = ωnd:

ωnd =
1

T
arccos

[
2αβ − α − β

2αβ − α − β + 1

]

=
1

T
arccos

[
z0 + zp

1 + z0zp

]

.

(15)

The magnitude and phase plots of the compensatorCd(z)
when γd = [0.2 : 0.2 : 1, 1/(0.2 : 0.2 : 1)], ωnd = 1 and
T = 0.3 are shown in Fig. 8. For the discrete time case the
compensator design problem can be formulated as follows.

Design Problem (discrete time): find the parametersα and
β of compensator (10) such that:

Cd(e
jωT ) =

1 + α(ejωT − 1)

1 + β(ejωT − 1)
= Mejϕ, (16)

whereM andϕ are the magnitude and the phase desired at
frequencyω.

ωT
2

ωT

ω̄r

ω̄i

Im

Re−1 1

ϕ̄

ω̄ ejϕ̄

ejωT

−1

Fig. 9. Graphical representation of vectorsejω T andω̄ ejϕ̄ = ejω T −1.

Inversion formulas (discrete time): the discrete time design
problem is solved by the followinginversion formulas:

α =
1

2
+

M − cos ϕ

2 sin ϕ tan ωT
2

β =
1

2
+

cos ϕ − 1
M

2 sin ϕ tan ωT
2

(17)

Proof. Let ω̄r and ω̄i denote the real and imaginary parts of
vectorejωT − 1:

ejωT − 1 = ω̄r + j ω̄i = ω̄ ejϕ̄, (18)

where

ω̄r = ω̄ cos ϕ̄ = cos ωT − 1

ω̄i = ω̄ sin ϕ̄ = sinωT
(19)

One can easily verify, see Fig. 9, that the amplitudeω̄ and
the phasēϕ of vectorω̄ ejϕ̄ = ejωT −1 can also be expressed
as follows:

ω̄ = 2 sin
ωT

2
, ϕ̄ =

π

2
+

ωT

2
. (20)

Substituting (18) in (16) one obtains the equation:

1 + α(ω̄r + jω̄i)

1 + β(ω̄r + jω̄i)
= M(cos ϕ + j sin ϕ).

Separating the real and the imaginary parts, one obtains the
system:

1 + α ω̄r = M
[
(1 + β ω̄r) cos ϕ − β ω̄i sinϕ

]

α ω̄i = M
[
(1 + β ω̄r) sin ϕ + β ω̄i cos ϕ

]

which can be rewritten in a matrix form as a linear system
to be solved with respect to the parametersα andβ:

[
M(ω̄r cos ϕ−ω̄i sin ϕ) −ω̄r

M(ω̄r sin ϕ+ω̄i cos ϕ) −ω̄i

] [
β
α

]

=

[
1−M cos ϕ
−M sinϕ

]



The solutions of this system are the followings:

α =

M(ω̄r cos ϕ−ω̄i sin ϕ) 1−M cos ϕ
M(ω̄r sinϕ+ω̄i cos ϕ) −M sinϕ

M (ω̄2
i + ω̄2

r) sin ϕ

β =

1 − M cos ϕ −ω̄r

−M sin ϕ −ω̄i

M(ω̄2
i + ω̄2

r) sin ϕ

After some mathematical manipulations, the solutionsα and
β can be simplified as follows:

α = − ω̄r sin ϕ + ω̄i cos ϕ − Mω̄i

ω̄2 sinϕ

β =
−Mω̄r sin ϕ + Mω̄i cos ϕ − ω̄i

M ω̄2 sin ϕ

from which, using relations (19) and simplifying, it follows:

α =
M sin ϕ̄ − sin(ϕ̄ + ϕ)

ω̄ sin ϕ

β =
M sin(ϕ̄ − ϕ) − sin ϕ̄

M ω̄ sinϕ

Using relations (20) one obtains:

α =
M sin(π

2 + ωT
2 ) − sin(π

2 + ωT
2 + ϕ)

2 sin ωT
2 sinϕ

β =
sin(π

2 + ωT
2 − ϕ) − 1

M
sin(π

2 + ωT
2 )

2 sin ωT
2 sinϕ

which can be rewritten as follows:

α =
M cos ωT

2 − cos ωT
2 cos ϕ + sin ωT

2 sin ϕ

2 sin ωT
2 sin ϕ

β =
cos ωT

2 cos ϕ − sin ωT
2 sin ϕ − 1

M
cos(ωT

2 )

2 sin ωT
2 sinϕ

Simplifying one obtains the discrete inversion formulas (17):

α =
1

2
+

M − cos ϕ

2 sin ϕ tan ωT
2

β =
1

2
+

cos ϕ − 1
M

2 sin ϕ tan ωT
2

Remark: these formulas can also be rewritten in the follow-
ing form:

α =
1

2
+

ω τ1

2 tan ωT
2

β =
1

2
+

ω τ2

2 tan ωT
2

(21)

where τ1 and τ2 are the parameters obtained from the
continuous time inversion formulas (5) when the same design
parametersM , ϕ andω are used.

sp

zp

s0

z0

Re(s)

Re(z)

1

−1

Fig. 10. Graphical correspondence betweens-plane andz-plane due to
the bilinear transformation.

Remark: substituting (21) in (13) one obtains:

γd =
2α − 1

2β − 1
=

τ1

τ2
= γ (22)

that is, the high frequency gainγd of the discrete compen-
satorCd(z) obtained using inversion formulas (17) is equal
to the high frequency gainγ of the continuous compensator
C(s) obtained with formulas (5). Moreover, from (22) and
(14) it follows that the maximum phaseϕmd of the discrete
compensatorCd(z) obtained by using the inversion formulas
(17) is equal to maximum phaseϕm of the correspondent
continuous compensatorC(s): ϕmd = ϕm.

Remark: from (11), (12) and (21) it follows that, for0 <
ω < π

T
, the two parametersα and β are greater that 0.5

if and only if the two parametersτ1 andτ2 are positive:

(α > 0.5, β > 0.5) ⇔ (τ1 > 0, τ2 > 0)

This result is important because it proofs that in the complex
plane the set of all the pointsP = M ejϕ for which α > 0.5
and β > 0.5 coincides with the set of all the points for
which τ1 > 0 and τ2 > 0, that is, the admissible domains
for the discrete inversion formulas (17) are equal to the
admissible domainsD1 and D2 shown in Fig. 3 for the
continuous time inversion formulas (5). Moreover, from (22)
it follows that D1 is the domain for whichCd(z) is a lag
compensator, whileD2 is the domain for whichCd(z) is a
lead compensator.

Remark: the formulas (21) create a link between parameters
τ1, τ2 and parametersα, β. Nevertheless,τ1 andτ2 determine
the position of polesp and zeros0 of function C(s) on the
s-plane, whileα and β determine the position of polezp

and zeroz0 of function Cd(z) on thez-plane. Taking into
account relations (2), (11) and (21), one obtains the following
biunivocal correspondence betweens-plane andz-plane:

s =
ω

tan ωT
2

[
z − 1

z + 1

]

↔ z =
1 + s

ω
tan ωT

2

1 − s
ω

tan ωT
2

This correspondence is the well knownbilinear transforma-
tion with prewarping, see Fig. 10.

Numerical example. Let us refer to the same systemG(s) =
25/(s(s + 1)(s + 10)) considered in the previous numerical
example and let us try to design a discrete lead compensator
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Fig. 11. Design of a lead discrete compensatorCd(z) on the Nyquist
plane whenT = 0.15 s.

Cd(z) which imposes a phase marginMϕ = 60o when
T = 0.15 s. The discrete systemHG(z) to be controlled
is the following:

HG(z) =
(9.657z2 + 26.66z + 4.259)10−3

z3 − 2.084z2 + 1.276z − 0.192
.

The design specificationMϕ = 60o is unchanged, so point
B = MB ejϕB is the same used in the previous case:
MB = 1, ϕB = π +Mϕ = 240o. PointA = HG(ejωAT ) =
MAejϕA is now chosen on the Nyquist diagram of function
HG(z) whenω = ωA:

MA = 0.5361, ϕA = 186.2o, ωA = 2.02.

From Fig. 11 one can easily verify that pointA belongs to
the admissible domain for a discrete lead compensator (the
dotted half circle shown in Fig. 11). ParametersM and ϕ
are now the following:

M =
MB

MA

= 1.865, ϕ = ϕB − ϕA = 53.76o.

SubstitutingM , ϕ, ω andT in the discrete inversion formulas
(17) one obtainsα = 5.673 and β = 0.723. The discrete
compensator is now the following:

Cd(z) =
1 + 5.673(z − 1)

1 + 0.723(z − 1)
.

The red lines shown in Fig. 11 are the Nyquist diagrams of
the discrete functionsHG(z) (dashed line) andCd(z)HG(z)
(solid line). For comparison, in Fig. 11 are also reported the
Nyquist diagrams of the continuous functionsG(s) (black
dashed thin line) andCl(s)G(s) (black solid thin line).

In Fig. 12 are shown the step responses of the two systems
Cl(s)G(s) (black solid thin line) andCd(z)HG(z) (red solid
thick line) controlled in closed loop. For comparison, in the
same figure it is also reported (blue dash-dotted thick line)
the step response of the systemCb(z)HG(z) controlled in
closed loop, when the discrete compensatorCb(z) is obtained

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

Step response:T = 0.15 s

y
(t

)

Time (s)

Fig. 12. Step responses of the considered systems controlledin closed
loop. Sampling period:T = 0.15 s.

from Cl(s) by using the bilinear correspondence between the
s andz complex variables:

Cb(z) = Cl(s)|s= 2
T

z−1

z+1

=
1.762 z − 1.462

0.384 z − 0.084
.

From Fig. 12 it is evident that with the discrete inversion
formulas (17) one obtains a discrete time behaviour very
similar to the one obtained in the continuous time case.

IV. CONCLUSIONS

The discrete inversion formulas presented in this paper are
particularly suitable for the design of discrete compensators
in the frequency domain. Due to the simplicity of the
formulas and the clarity of the related graphical design
procedure, we think that these formulas can be very useful
also for teaching.
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