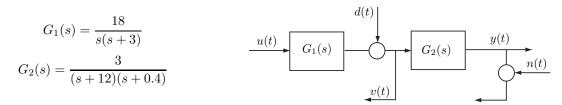
Cognome:	Nome:	N. Matr.:				
□ Sistemi di Controllo	□ Controlli Automatici	☐ Ho superato la Parte A in data (mese/anno) ☐ Intendo svolgere la tesina con Matlab/Simulink				
Sistemi d	Ingegneria Meccanica	ntrolli Automatici (Parte B) e Ingegneria del Veicolo ebbraio 2017 - Quiz				
possono avere più risposte I quiz si ritengono superat	e corrette. ti se vengono individuate alm	ocetta le risposte che si ritengono corrette. Alcuni quesiti neno metà delle risposte esatte (punti 5.5 su 11), diversa- dere dal risultato della seconda prova.				
di anello è riportat delle ampiezze) affe	mico retroazionato la cui fun a in figura (diagramma di tto da un disturbo sinusoida ione 0.1 rad/s, l'attenuazion è pari a circa:	Bode ale di 100 ne del 80 60				
○ 1000 volte		8 40 9 20				
○ 100 volte		-20				
○ 60 volte		-40				
○ 40 volte		-60 10 ⁻² 10 ⁻¹ 10 ⁰ 10 ¹ 10 ² 10 ³				
2. La banda passante o	di un filtro passa-banda ha la	a forma:				
$\bigcirc [0,\omega_{B1}] \cup [\omega_{B2},$	$,\infty]$					
$\bigcirc \ [\omega_{B1},\omega_{B2}]$						
$\bigcirc \ [0,\omega_B]$						
$\bigcirc \ [\omega_B,\infty]$						
3. Il controllo in feedfo	orward presenta i seguenti sv	antaggi:				
O performance sc	adenti in condizioni nominal	i				
scarsa robustez	za rispetto a disturbi agenti	sull'impianto				
O necessità di una conoscenza precisa del plant						
O ottenimento di tempi di assestamento molto più grandi di quelli ottenibili con un controllore in retroazione						
4. In un sistema in ret	4. In un sistema in retroazione, la funzione di sensitività del controllo $Q(s)$:					
O dipende solo da	\bigcirc dipende solo dalla funzione di trasferimento dell'impianto $G(s)$					
O dipende solo da	alla funzione di trasferimento	del regolatore $R(s)$				
\bigcirc dipende sia da $R(s)$ che da $G(s)$						
O dipende solo da	al guadagno d'anello $L(s) =$	R(s)G(s)				
	ma (ovvero col minimo numer	taria negativa un impianto di tipo 1, il regolatore statico ro di poli nell'origine) che garantisce errore a regime nullo				
$\bigcap R_s(s) = \mu$						
$\bigcap R_s(s) = \frac{\mu}{s}$						
$\bigcirc R_s(s) = \frac{s}{\mu}$						
$\bigcirc R_s(s) = \frac{\mu}{s^3}$						

6. La progettazione di una rete correttrice per cancellazione:	
O permette di imporre in maniera esatta sia il margine di ampiezza che la pulsazione di incrocio del funzione di anello	la
○ è utile per evitare l'insorgere di code di assestamento	
O può essere effettuata cancellando qualunque polo dell'impianto, anche instabile	
O può essere infattibile nel caso non si riesca a ottenere il margine di fase desiderato alla pulsazione incrocio scelta	di
7. In un regolatore PID, l'azione di controllo derivativa	
O riduce i disturbi di misura	
O limita l'azione di controllo	
○ si usa per migliorare il margine di fase	
O può essere realizzata fisicamente solo aggiungendo un polo ad alta frequenza	
8. Un sistema di controllo in retroazione (con $\omega_c=4$) basato su un regolatore digitale è affetto da rumore misura e pertanto è stato dotato di un filtro anti-aliasing del secondo ordine, la cui pulsazione di taglio stata collocata a $\omega_{aa}=40$ rad/s. Quale dovrebbe essere la pulsazione di campionamento tale da garanti un'attenuazione dei disturbi di almeno 100 volte?	è
$\bigcirc \omega_s \approx 40 \text{ rad/sec}$	
$\bigcirc \omega_s \approx 80 \text{ rad/sec}$	
$\bigcirc \ \omega_s \approx 400 \ \mathrm{rad/sec}$	
$\bigcirc \omega_s \approx 800 \text{ rad/sec}$	
9. In un sistema di controllo digitale in retroazione, una riduzione del margine di fase può essere provocat	a:
O dall'operazione di campionamento e ricostruzione dei segnali	
O dall'aliasing provocato dal campionamento	
○ da un'eventuale filtro anti-aliasing	
O da un eventuale compensatore dei disturbi misurabili realizzato discretizzando il corrisponden compensatore tempo-continuo	te
10. Data una generica traiettoria normalizzata, l'operazione di scalatura temporale al fine di ottenere un specifica durata T :	ıa
\bigcirc modifica in maniera lineare $(\frac{1}{T})$ tutte le sue derivate (e quindi velocità, accelerazione,) \bigcirc lascia invariate tutte le derivate	
O modifica linearmente $(\frac{1}{T})$ la velocità, quadraticamente $(\frac{1}{T^2})$ l'accelerazione e così via per le deriva successive	te

Cognome:	Nome:	N. Matr.:	
□ C:-t: 1: Ct11-	□ C+11: A++:-:	He gunerate la Parte A in data (maga/anna)	

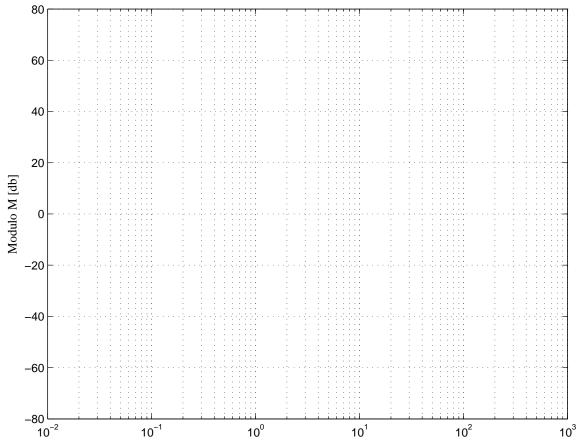
- □ Sistemi di Controllo
- □ Controlli Automatici
- ☐ Ho superato la Parte A in data (mese/anno)
- \Box Intendo svolgere la tesina con Matlab/Simulink

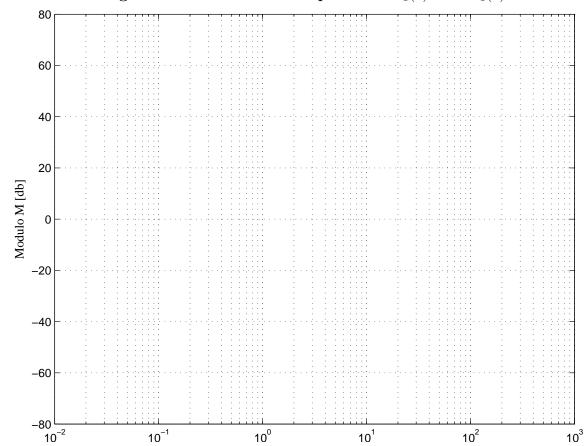

Sistemi di Controllo - Controlli Automatici (Parte B)

Ingegneria Meccanica e Ingegneria del Veicolo

Compito del 23 febbraio 2017 - Problemi

Rispondere in maniera analitica ai seguenti quesiti. I problemi e le domande a risposta aperta si ritengono superati se vengono conseguiti almeno metà dei punti totali (11 su 22), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della prima prova.


- 1. Descrivere le principali tecniche per la taratura dei regolatori PID.
- 2. Dato l'impianto di figura con:


Si procede alla realizzazione di uno schema di controllo in cascata partendo dall'anello più esterno. Si richiede pertanto di:

- a) Progettare il regolatore di complessità minima, denominato $R_2(s)$, per il solo sottosistema $G_2(s)$ che consenta di ottenere:
 - errore di posizione nullo;
 - risposta aperiodica;
 - tempo di assestamento $T_a \leq 2$ s;
 - azione di controllo minima.
- b) Disegnare il diagramma di Bode delle ampiezze di $L_2(s) = R_2(s)G_2(s)$.
- c) Progettare l'anello di controllo interno con il regolatore $R_1(s)$, di complessità minima, che consenta il soddisfacimento delle seguenti specifiche:
 - attenuazione di un disturbo d(t) frequenzialmente confinato nel range [0.1, 0.4] rad/s di almeno 60 volte:
 - $-\,$ margine di fase M_f di almeno $55^o;$
 - pulsazione di incrocio ω_c compatibile con il disaccopiamento frequenziale richiesto dal progetto del regolatore in cascata.
- d) Tracciare i diagrammi di Bode delle ampiezze di $L_1(s) = R_1(s)G_1(s)$ e della funzione di sensitività complementare $F_1(s)$. Infine sovrapporre il diagramma di $|F_1(j\omega)|$ a quello di $|L_2(j\omega)|$, tracciato al punto b), e discutere la fattibilità del progetto in cascata.
- e) Scegliere il tempo di campionamento più idoneo per discretizzare i regolatori $R_1(s)$, $R_2(s)$ tenendo conto della larghezza di banda dei sistemi retroazionati e imponendo che il peggioramento del margine di fase dovuto al ricostruttore di ordine zero non superi i 10^o . Discretizzare entrambi i regolatori mediante il metodo di Tustin.
- f) Scrivere le equazioni alle differenze corrispondenti ai regolatori $R_1(z) = \frac{U_1(z)}{E_1(z)}$, $R_2(z) = \frac{U_2(z)}{E_2(z)}$ discretizzati al punto precedente.
- g) Progettare un'azione di feed-forward $u_{ff}(t)$ per l'intero impianto che consenta di inseguire senza errore il riferimento $y_{sp}(t)$, di cui è nota l'espressione analitica insieme a quella delle sue derivate. Quale sarà l'ordine di continuità minimo della traiettoria $y_{sp}(t)$ che garantisce un'azione di controllo limitata?

Diagrammi di Bode delle ampiezze di $L_2(s)$ e di $F_1(s)$

Diagrammi di Bode delle ampiezze di $L_1(s)$ e di ${\cal F}_1(s)$

 $\bigcap R_s(s) = \frac{\mu}{s^2}$

 $\bigcap R_s(s) = \frac{\mu}{3}$

6.	. La progettazione di una rete correttrice per cancellazione:
	O permette di imporre in maniera esatta sia il margine di ampiezza che la pulsazione di incrocio della funzione di anello
	⊗ è utile per evitare l'insorgere di code di assestamento
	O può essere effettuata cancellando qualunque polo dell'impianto, anche instabile
	può essere infattibile nel caso non si riesca a ottenere il margine di fase desiderato alla pulsazione di incrocio scelta
7.	. In un regolatore PID, l'azione di controllo derivativa
	O riduce i disturbi di misura
	O limita l'azione di controllo
	⊗ si usa per migliorare il margine di fase
	\bigotimes può essere realizzata fisicamente solo aggiungendo un polo ad alta frequenza
8.	. Un sistema di controllo in retroazione (con $\omega_c=4$) basato su un regolatore digitale è affetto da rumore di misura e pertanto è stato dotato di un filtro anti-aliasing del secondo ordine, la cui pulsazione di taglio è stata collocata a $\omega_{aa}=40$ rad/s. Quale dovrebbe essere la pulsazione di campionamento tale da garantire un'attenuazione dei disturbi di almeno 100 volte?
	$\bigcirc \omega_s \approx 40 \text{ rad/sec}$
	$\bigcirc \omega_s \approx 80 \text{ rad/sec}$
	$\bigcirc \ \omega_s \approx 400 \ \mathrm{rad/sec}$
	$\bigotimes \omega_s \approx 800 \text{ rad/sec}$
9.	. In un sistema di controllo digitale in retroazione, una riduzione del margine di fase può essere provocata
	⊗ dall'operazione di campionamento e ricostruzione dei segnali
	O dall'aliasing provocato dal campionamento
	\bigotimes da un'eventuale filtro anti-aliasing
	\bigcirc da un eventuale compensatore dei disturbi misurabili realizzato discretizzando il corrispondente compensatore tempo-continuo
10.	. Data una generica traiettoria normalizzata, l'operazione di scalatura temporale al fine di ottenere una specifica durata T :
	\bigcirc modifica in maniera lineare $(\frac{1}{T})$ tutte le sue derivate (e quindi velocità, accelerazione,)
	○ lascia invariate tutte le derivate
	\bigotimes modifica linearmente $(\frac{1}{T})$ la velocità, quadraticamente $(\frac{1}{T^2})$ l'accelerazione e così via per le derivate successive

- □ Sistemi di Controllo
- \Box Controlli Automatici
- ☐ Ho superato la Parte A in data (mese/anno)
- □ Intendo svolgere la tesina con Matlab/Simulink

Sistemi di Controllo - Controlli Automatici (Parte B)

Ingegneria Meccanica e Ingegneria del Veicolo

Compito del 23 febbraio 2017 - Problemi

Rispondere in maniera analitica ai seguenti quesiti. I problemi e le domande a risposta aperta si ritengono superati se vengono conseguiti almeno metà dei punti totali (11 su 22), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della prima prova.

- 1. Descrivere le principali tecniche per la taratura dei regolatori PID.
- 2. Dato l'impianto di figura con:

$$G_1(s) = \frac{18}{s(s+3)}$$

$$G_2(s) = \frac{3}{(s+12)(s+0.4)}$$

$$u(t)$$

$$G_1(s)$$

$$u(t)$$

$$G_2(s)$$

$$v(t)$$

Si procede alla realizzazione di uno schema di controllo in cascata partendo dall'anello più esterno. Si richiede pertanto di:

- a) Progettare il regolatore di complessità minima, denominato $R_2(s)$, per il solo sottosistema $G_2(s)$ che consenta di ottenere:
 - errore di posizione nullo;
 - risposta aperiodica;
 - tempo di assestamento $T_a < 2$ s;
 - azione di controllo minima.

SOLUZIONE:

Per garantire errore di posizione (cioè errore a regime per ingresso a gradino) nullo, il regolatore $R_2(s)$ dovrà avere un polo nell'origine. Pertanto, con ogni probabilità, il regolatore avrà la forma di un PI (o di un PID)

$$R_2(s) = \mu \frac{\tau_z s + 1}{s}.$$

Le altre specifiche si traducono in:

- risposta aperiodica $\rightarrow M_f^\star = 80^o$
- tempo di assestamento $T_a \leq 2$ s $\to T_a = \frac{3}{\omega_c} \leq 2$ s $\to \omega_c \geq \frac{3}{2}$. Si assume il valore minimo $\omega_c^\star = 1.5$ rad/s per minimizzare l'azione di controllo, come richiesto.

Il sistema esteso

$$G_{2e}(s) = \frac{G_2(s)}{s} = \frac{3}{s(s+12)(s+0.4)}$$

alla pulsazione di incrocio desiderata vale in modulo e argomento $|G_{2e}(j1.5)|=0.1065$ e $\arg\{G_{2e}(j1.5)\}=-172.1936^o$, rispettivamente. Dal momento che la fase è "relativamente" alta, si tenta un progetto per cancellazione, con lo zero del PI utilizzato per migliorare il margine di fase e il guadagno per imporre la ω_c^\star desiderata. Si fissa $\tau_z=\frac{1}{0.4}$ (cancellazione del polo in -0.4) e si procede al calcolo di

$$\mu = \frac{1}{|G_{2e}(j1.5)| \cdot \sqrt{1 + (\tau_z \, \omega_e^*)^2}} = \frac{1}{0.1065 \cdot 3.8810} = 2.4187.$$

Resta da verificare il Margine di fase oottenuto

$$M_f = 180^o + \arg\{G_{2e}(j1.5)\} + \varphi_z = 82.8750^o > 80^o$$

essendo $\varphi_z=75.0686^o$. L'espressione del regolatore PI in grado di soddisfare tutte le specifiche risulta pertanto

$$R_2(s) = 2.4187 \frac{2.5 \, s + 1}{s}.$$

b) Disegnare il diagramma di Bode delle ampiezze di $L_2(s) = R_2(s)G_2(s)$.

SOLUZIONE:

Vedere diagramma in fondo

- c) Progettare l'anello di controllo interno con il regolatore $R_1(s)$, di complessità minima, che consenta il soddisfacimento delle seguenti specifiche:
 - attenuazione di un disturbo d(t) frequenzialmente confinato nel range [0.1, 0.4] rad/s di almeno 60 volte;
 - margine di fase M_f di almeno 55^o ;
 - pulsazione di incrocio ω_c compatibile con il disaccopiamento frequenziale richiesto dal progetto del regolatore in cascata.

SOLUZIONE:

Il regolatore $R_2(s)$ sarà costituito da una parte statica (un semplice guadagno μ) più (eventualmente) una parte dinamica. Il guadagno μ deve essere scelto in modo tale a garantire l'attenuazione del disturbo d(t) richiesta, pertanto accorre far sì che alla massima pulsazione del disturbo ($\omega_d=0.4~{\rm rad/s}$) si abbia $|S(j\omega_d)|\leq \frac{1}{60}$. Considerando l'espressione approssimata di $|S(j\omega)|$ per basse frequenze risulta

$$|S(j\omega_d)| \approx \frac{1}{|L(j\omega_d)|} \Rightarrow |L(j\omega_d)| \ge 60$$

con $L(s) = \mu G_1(s)$. Svolgendo i calcoli risulta

$$|\mu G_1(j0.4)| \ge 60 \Rightarrow \mu \ge \frac{60}{14.8684} = 4.0354.$$

Per semplicità si assume $\mu=5$. Per il calcolo del regolatore dinamico si considera il sistema esteso $G_{1e}(s)=\frac{90}{s(s+3)}$ a cui si dovrà imporre un margine di fase $M_f=55^o$ alla pulsazione di incrocio $\omega_c=15$ rad/s (scelta un ordine di grandezza maggiore rispetto alla pulsazione di incrocio dell'annello esterno progettato al punto a)). Dal calcolo del modulo e dell'argomento di $G_{1e}(j\omega)$, alla pulsazione ω_c^* si evince come sia necessaria una rete anticipatrice. Infatti, $|G_{1e}(j15)|=0.3922$ e $\arg(G_{1e}(j15))=-168.6901^o$. Pertanto l'amplificazione della rete dovrà essere

$$M^* = \frac{1}{|G_{1e}(j\omega_e^*)|} = 2.5495,$$

mentre lo sfasamento dovrà essere

$$\varphi^* = -180^o + M_f^* - \arg(G_{1e}(j\omega_c^*)) = 43.6901^o.$$

 M^{\star} e φ^{\star} verificano le condizioni di applicabilità di una rete anticipatrice. Dalle formule di inversione si ricava che $\tau=0.1763$ e $\alpha=0.1811$ per cui

$$R_d(s) = \frac{0.1763 \, s + 1}{0.03193 \, s + 1}.$$

Alla fine il regolatore $R_1(s)$ vale

$$R_1(s) = 5 \frac{0.1763 \, s + 1}{0.03193 \, s + 1}.$$

d) Tracciare i diagrammi di Bode delle ampiezze di $L_1(s) = R_1(s)G_1(s)$ e della funzione di sensitività complementare $F_1(s)$. Infine sovrapporre il diagramma di $|F_1(j\omega)|$ a quello di $|L_2(j\omega)|$, tracciato al punto b), e discutere la fattibilità del progetto in cascata.

SOLUZIONE:

Vedere diagramma in fondo.

e) Scegliere il tempo di campionamento più idoneo per discretizzare i regolatori $R_1(s)$, $R_2(s)$ tenendo conto della larghezza di banda dei sistemi retroazionati e imponendo che il peggioramento del margine di fase dovuto al ricostruttore di ordine zero non superi i 10^o . Discretizzare entrambi i regolatori mediante il metodo di Tustin.

SOLUZIONE:

Il tempo di campionamento può essere scelto considerando la più restrittiva delle condizioni derivanti dalla largehezza di banda dei due regolatori e dal massimo sfasamento ammissibile:

(a) per
$$R_1(s)$$
, $\omega_c^{\star}=15 \ rad/s \quad \Rightarrow \quad \omega_s=10 \omega_c^{\star}=150 \ rad/s \quad \Rightarrow \quad T=\frac{2\pi}{\omega_s}=0.0419 \ s$

(b) per
$$R_2(s)$$
, $\omega_c^{\star} = 1.5 \ rad/s \quad \Rightarrow \quad \omega_s = 10 \omega_c^{\star} = 15 \ rad/s \quad \Rightarrow \quad T = \frac{2\pi}{\omega_s} = 0.419 \ s$

(c)
$$\Delta M_f = \frac{T}{2}\omega_c\frac{180}{\pi} \leq 10^o \quad \Rightarrow \quad T \leq \frac{10\cdot 2\pi}{\omega_c\cdot 180} = 0.0233 \ s$$
 essendo $\omega_c = 15 \ \text{rad/s}$ (si assume la ω_c più grande che corrsiponde al caso peggiore).

Il valore T=0.02 soddisfa tutte le specifiche.

Sostituendo $s=rac{2}{T}rac{1-z^{-1}}{1+z^{-1}}$ la funzione di trasferimento dei regolatori discretizzati risulta

$$R_1(s) = 5 \frac{0.1763 \, s + 1}{0.03193 \, s + 1} \quad \Rightarrow \quad R_1(z) = \frac{22.21 - 19.83 z^{-1}}{1 - 0.523 z^{-1}} = \frac{22.21z - 19.83}{z - 0.523}$$

$$R_2(s) = 2.4187 \frac{2.5 \, s + 1}{s} \quad \Rightarrow \quad R_2(z) = \frac{6.071 - 6.023 z^{-1}}{1 - z^{-1}} = \frac{6.071 z - 6.023}{z - 1}$$

f) Scrivere le equazioni alle differenze corrispondenti ai regolatori $R_1(z)=\frac{U_1(z)}{E_1(z)},\ R_2(z)=\frac{U_2(z)}{E_2(z)}$ discretizzati al punto precedente.

SOLUZIONE:

Interpretando z^{-1} come l'operatore ritardo unitario segue immediatamente che le equazioni alle differenze corrispondenti a $R_1(z)$ e $R_2(z)$ sono:

$$R_1(z) = \frac{22.21 - 19.83z^{-1}}{1 - 0.523z^{-1}} = \frac{U_1(z)}{E_1(z)} \quad \Rightarrow \quad u_{1k} = 0.523u_{1k-1} + 22.21e_{1k} - 19.83e_{1k-1} + 22.21e_{1k} - 19.83e_{1k} - 19.8$$

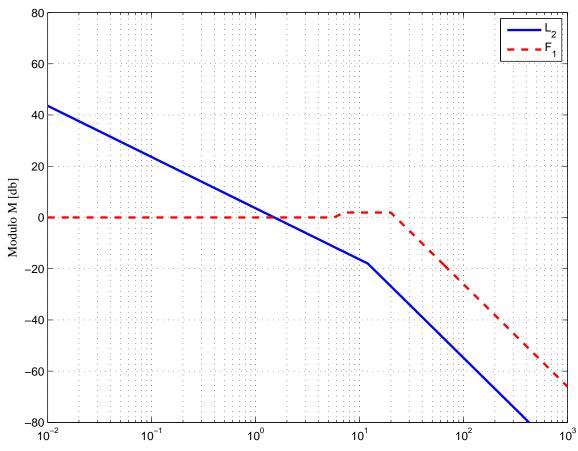
$$R_2(z) = \frac{6.071 - 6.023z^{-1}}{1 - z^{-1}} = \frac{U_2(z)}{E_2(z)} \quad \Rightarrow \quad u_{2k} = u_{2k-1} + 6.071e_{2k} - 6.023e_{2k-1} + 6.071e_{2k} - 6.071e$$

g) Progettare un'azione di feed-forward $u_{ff}(t)$ per l'intero impianto che consenta di inseguire senza errore il riferimento $y_{sp}(t)$, di cui è nota l'espressione analitica insieme a quella delle sue derivate. Quale sarà l'ordine di continuità minimo della traiettoria $y_{sp}(t)$ che garantisce un'azione di controllo limitata?

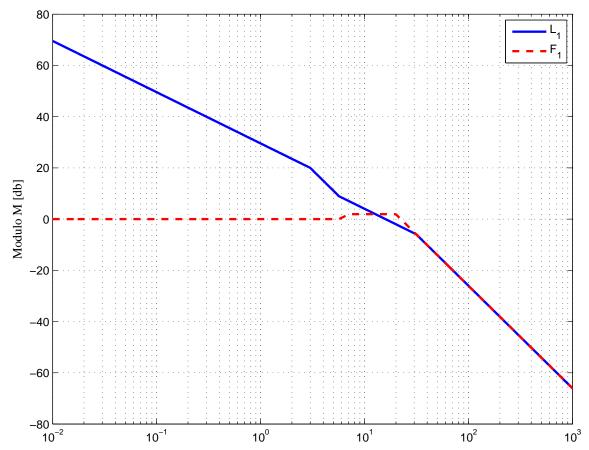
SOLUZIONE:

Invertendo la funzione di trasferimento $G(s)=G_1(s)G_2(s)=\frac{54}{s^4+15.4s^3+42s^2+14.4s}$ e interpretando l'operatore s come operatore di derivazione l'espressione dell'azione in avanti risulta immediata

$$U_{ff}(s) = G^{-1}(s)Y_{sp}(s) = \frac{1}{54}s^4Y_{sp}(s) + \frac{15.4}{54}s^3Y_{sp}(s) + \frac{42}{54}s^2Y_{sp}(s) + \frac{14.4}{54}sY_{sp}(s)$$
$$= 0.01852s^4Y_{sp}(s) + 0.2852s^3Y_{sp}(s) + 0.7778s^2Y_{sp}(s) + 0.2667sY_{sp}(s)$$


$$\psi$$

$$u_{ff}(t) = 0.01852y_{sp}^{(4)}(t) + 0.2852y_{sp}^{(3)}(t) + 0.7778y_{sp}^{(2)}(t) + 0.2667y_{sp}^{(1)}(t)$$


dove $y_{sp}^{(i)}(t)$ denota la derivata i-esima della funzione $y_{sp}(t)$.

Per garantire la limitatezza dell'azione di controllo $u_{ff}(t)$ è necessario che la traiettoria di riferimento $y_{sp}(t)$ sia almeno \mathbb{C}^3 , cioè continua fino alla derivata terza.

Diagrammi di Bode delle ampiezze di $L_2(s)$ e di $F_1(s)$

Diagrammi di Bode delle ampiezze di $L_1(s)$ e di $F_1(s)$

