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A direct road from software quality to
state semantics computability

* |n this talk we show how Part -Whole
Statecharts, originally created in order to
improve software quality, showed themselves
to have a semantics which is directly
computable;

 We will try to suggest in the talk that a direct
relationship can be established amongst
software quality factors, true compositionality
and semantics computability;



Software Quality Factors in Behavioral
Abstractions

* Meyer software quality factors:
— Reusability;
— Understandability;
— Manutenability;

* Depend critically on well known prerequisites
— self-containment;
— loose coupling;
— information hiding.

 We will show that no one of the prerequisites are
met by current state-of-the-art modelling tools.



Modelling behavioral abstractions by
state machines

e State-based formalism are
— Very expressive;
— Easy to understand and to exchange;

— Easily formalisable;

e A state can be seen as a snapshot of the world without
further explanations:

— For example: Open, Closed, Middle, Filling, and so on.

e A state can be seen at the same time as a bunch of
properties being modelled:

— Open == (ValveDoorAngle =90 && MagnetVoltage = 0.0).
— Directly executable!



Composing behavior

* |n order to be effective, state-based
abstractions need to be specifiable, modifiable

as well as testable and certifiable
incrementally:

— Off-the-shelf abstractions... was the dream
achieved after 40 years?
— Harel state modelling paradigm provides

modelling primitives that can be used in order to
compose separate behaviors...



Composing different aspects of a
bottle behavior
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Composing behavior

* |[n order to obtain something useful, we have
to constrain the unrestricted global Cartesian
automaton:

— We have to stop the bottle in order to fill it!
— We have to stop the bottle in order to seal it!



Constraining behavior
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Further constraining behavior
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Filling a tank through Statecharts!
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Composing behaviors by ordinary
Statecharts is not effective

* Tightly coupled abstractions jeopardize

— Reusability: behaviors mutually depend on the other
behaviors;

— Understandability: we have to look around in order to
grasp the exact meaning;

— Modifiability: any new functionality added to one of the
component behaviors requires potentially to the other;

— Semantics not computable... pinball effect! Event bounce
from a behavioral abstraction to the another: will they

stop? Mutual dependence among abstractions...
deadlock!



Avoid mutual knowledge...

Nozzle

Tank




How can we communicate... if we can not?

We have necessarily to add a third state machine acting as
a bridge: we call it the “whole”...
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e “Whole” state machine introduced in order to reduce
coupling among behavioral abstractions;

* |t has however some interesting interpretations:

— |t embeds the semantics of composition which has been
removed from the component behaviors, which are now
self-contained;

— Such a semantics is computable!
» state W denotes the global state (A,C);
» state Z denotes the the global state (B,D).






Part-Whole Statecharts

* Introduced with the aim of improving software
quality of abstractions;

 Emergent behavior denoted explicitly by the
“whole” state machine, which reduces coupling
among behavioral abstractions; moreover
— It works as an interface for the system of interacting
entities;
— |t embeds the semantics of composition which has

been removed from the component behaviors, which
are now self-contained;

— |t has a semantics which is computable!



Case study: multiple dynamical
relationships within an ignition device
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TimedIgniter
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Conclusions

 We surveyed Part-Whole Statecharts, an
evolution of David Harel formalism created
having in mind basic software quality principles;

* By an explicit composition state machine, called

the “whole”, it allows arbitrary composition of
behavioral abstractions;

e Such a formalism exhibits a computable
semantics, which allows to check for safety and

liveness without resorting to model checking
techniques.



Further Development & Research

A method for checking safety & liveness
properties at design time in a state-based design
is patent pending under PCT/EP2008/051300;

* |Incremental safety certification for dependable
system should be feasible with the above
methodology:

— Composing certified components should lead directly
to a new certified system;

— Business model based on safety certification?



Thank you!



