Intern. Symposium on Quality Engineering for Embedded Systems June 13, 2008
Berlin, Germany

Improving Quality Factors in Model-Based Embedded Software

Luca Pazzi, Marco Pradelli
University of Modena and Reggio Emilia
Department of Information Engineering DII-UNIMORE
Via Vignolese 905, I-41125 Modena, Italy
{luca.pazzi,marco.pradelli}@unimore.it

A direct road from software quality to state semantics computability

- In this talk we show how Part –Whole
 Statecharts, originally created in order to improve software quality, showed themselves to have a semantics which is directly computable;
- We will try to suggest in the talk that a direct relationship can be established amongst software quality factors, true compositionality and semantics computability;

Software Quality Factors in Behavioral Abstractions

- Meyer software quality factors:
 - Reusability;
 - Understandability;
 - Manutenability;
- Depend critically on well known prerequisites
 - self-containment;
 - loose coupling;
 - information hiding.
- We will show that no one of the prerequisites are met by current state-of-the-art modelling tools.

Modelling behavioral abstractions by state machines

- State-based formalism are
 - Very expressive;
 - Easy to understand and to exchange;
 - Easily formalisable;
 - A state can be seen as a snapshot of the world without further explanations:
 - For example: Open, Closed, Middle, Filling, and so on.
 - A state can be seen at the same time as a bunch of properties being modelled:
 - Open == (ValveDoorAngle = 90 && MagnetVoltage = 0.0).
 - Directly executable!

Composing behavior

- In order to be effective, state-based abstractions need to be specifiable, modifiable as well as testable and certifiable incrementally:
 - Off-the-shelf abstractions... was the dream achieved after 40 years?
 - Harel state modelling paradigm provides modelling primitives that can be used in order to compose separate behaviors...

Composing different aspects of a bottle behavior

Unrestricted Cartesian product automaton

Composing behavior

- In order to obtain something useful, we have to constrain the unrestricted global Cartesian automaton:
 - We have to stop the bottle in order to fill it!
 - We have to stop the bottle in order to seal it!

Constraining behavior

Further constraining behavior

Filling a tank through Statecharts!

Composing behaviors by ordinary Statecharts is not effective

- Tightly coupled abstractions jeopardize
 - Reusability: behaviors mutually depend on the other behaviors;
 - Understandability: we have to look around in order to grasp the exact meaning;
 - Modifiability: any new functionality added to one of the component behaviors requires potentially to the other;
 - Semantics not computable... pinball effect! Event bounce from a behavioral abstraction to the another: will they stop? Mutual dependence among abstractions... deadlock!

Avoid mutual knowledge...

How can we communicate... if we can not?

We have necessarily to add a third state machine acting as a bridge: we call it the "whole"...

Which is the meaning of states W and Z?

- "Whole" state machine introduced in order to reduce coupling among behavioral abstractions;
- It has however some interesting interpretations:
 - It embeds the semantics of composition which has been removed from the component behaviors, which are now self-contained;
 - Such a semantics is computable!
 - state W denotes the global state (A,C);
 - state Z denotes the the global state (B,D).

Part-Whole Statecharts

- Introduced with the aim of improving software quality of abstractions;
- Emergent behavior denoted explicitly by the "whole" state machine, which reduces coupling among behavioral abstractions; moreover
 - It works as an interface for the system of interacting entities;
 - It embeds the semantics of composition which has been removed from the component behaviors, which are now self-contained;
 - It has a semantics which is computable!

Case study: multiple dynamical relationships within an ignition device

TimedIgniter Timer Igniter <u>push</u> Off Pushed FL_On **TOut** flame_on release flame_off <u>set</u> tout fail <u>push</u> flame_on t10 FWarn TIn Retry t9 flame_warning t : Timer ig: igniter whole t.timeOut Fail <ig.release> ignition_failed <u>start</u> ig.flame_on Off Wait Ok <ig.push,t.set> ignition_success

Conclusions

- We surveyed Part-Whole Statecharts, an evolution of David Harel formalism created having in mind basic software quality principles;
- By an explicit composition state machine, called the "whole", it allows arbitrary composition of behavioral abstractions;
- Such a formalism exhibits a computable semantics, which allows to check for safety and liveness without resorting to model checking techniques.

Further Development & Research

- A method for checking safety & liveness properties at design time in a state-based design is patent pending under PCT/EP2008/051300;
- Incremental safety certification for dependable system should be feasible with the above methodology:
 - Composing certified components should lead directly to a new certified system;
 - Business model based on safety certification?

Thank you!