Intern. Symposium on Quality Engineering for Embedded Systems
June 13, 2008
Berlin, Germany

Improving Quality Factors in
Model-Based Embedded Software

A direct road from software quality to
state semantics computability

* |n this talk we show how Part -Whole
Statecharts, originally created in order to
improve software quality, showed themselves
to have a semantics which is directly
computable;

 We will try to suggest in the talk that a direct
relationship can be established amongst
software quality factors, true compositionality
and semantics computability;

Software Quality Factors in Behavioral
Abstractions

* Meyer software quality factors:
— Reusability;
— Understandability;
— Manutenability;

* Depend critically on well known prerequisites
— self-containment;
— loose coupling;
— information hiding.

 We will show that no one of the prerequisites are
met by current state-of-the-art modelling tools.

Modelling behavioral abstractions by
state machines

e State-based formalism are
— Very expressive;
— Easy to understand and to exchange;

— Easily formalisable;

e A state can be seen as a snapshot of the world without
further explanations:

— For example: Open, Closed, Middle, Filling, and so on.

e A state can be seen at the same time as a bunch of
properties being modelled:

— Open == (ValveDoorAngle =90 && MagnetVoltage = 0.0).
— Directly executable!

Composing behavior

* |n order to be effective, state-based
abstractions need to be specifiable, modifiable

as well as testable and certifiable
incrementally:

— Off-the-shelf abstractions... was the dream
achieved after 40 years?
— Harel state modelling paradigm provides

modelling primitives that can be used in order to
compose separate behaviors...

Composing different aspects of a
bottle behavior

Unrestricted Cartesian product
automaton

Emp’éy\ unclamp Empt
toppe |(oving
clamp -

fi

| fall
unclamp
Full Full
‘ gtopped I{ :| Govmg I)
clamp -
P

ca cap
)
oving
\

unclamp
Seale
topped

clamp

Composing behavior

* |[n order to obtain something useful, we have
to constrain the unrestricted global Cartesian
automaton:

— We have to stop the bottle in order to fill it!
— We have to stop the bottle in order to seal it!

Constraining behavior

i

[Stopped]
fill

~

unclam clam
Full P P

Sealed

unclamp

clamp

unclamp

Empt
oving

clamp

unclamp

Full
oving

clamp

cdat

Se_ale
oving

Further constraining behavior

i A

[Stopped]
fill

/ unclamp

unclamp clamp

[Stopped] / unclamp

Sealed

unclamp
oving
clamp

N 4
unclamp S -

ealed
clamp

Filling a tank through Statecharts!

Pump

O

= content + q < capacity

Composing behaviors by ordinary
Statecharts is not effective

* Tightly coupled abstractions jeopardize

— Reusability: behaviors mutually depend on the other
behaviors;

— Understandability: we have to look around in order to
grasp the exact meaning;

— Modifiability: any new functionality added to one of the
component behaviors requires potentially to the other;

— Semantics not computable... pinball effect! Event bounce
from a behavioral abstraction to the another: will they

stop? Mutual dependence among abstractions...
deadlock!

Avoid mutual knowledge...

Nozzle

Tank

How can we communicate... if we can not?

We have necessarily to add a third state machine acting as
a bridge: we call it the “whole”...

f
i b

Which is the meaning of states W and Z?

e
D
N
—
l
IN |
I

e “Whole” state machine introduced in order to reduce
coupling among behavioral abstractions;

* |t has however some interesting interpretations:

— |t embeds the semantics of composition which has been
removed from the component behaviors, which are now
self-contained;

— Such a semantics is computable!
» state W denotes the global state (A,C);
» state Z denotes the the global state (B,D).

Part-Whole Statecharts

* Introduced with the aim of improving software
quality of abstractions;

 Emergent behavior denoted explicitly by the
“whole” state machine, which reduces coupling
among behavioral abstractions; moreover
— It works as an interface for the system of interacting
entities;
— |t embeds the semantics of composition which has

been removed from the component behaviors, which
are now self-contained;

— |t has a semantics which is computable!

Case study: multiple dynamical
relationships within an ignition device

Ve

| button

| t1 f

|

|

|

l 2 release /

| push / close

| open, spark 13

|

|

|

\ -_— e ear s e e e e e -
valve

close / dim
t1

| |
| t3 |
| |
| |
| t2 I
\]

open / pull

- e e e e e e e e e e e e G G G G G e e e -

- - - - """ -"-"-"-"="="="-"="="=""=""=""="-=-"= \
| SPrng [flame.Off] / close /. I
| t4 t5 t1 |
| Heate |
I d I
| t3 t2 '
\ [flame.On] pull)

s T T === - \ r-TT T T === N
| button I flame |
I t1 I | u I
|, [p.OK] /.
| s ! Q |
| |
| |
I release / |
| push / close I
| open, spark |
| |
| |
| |
/
r |_ R U \
| vave close /fim |
| 13 |
| \ I
| |
| |
\ _open /full)
- e e e e e e e e e o e e e - - - - -
r- T T T T Y AR U \
| SPINg / close |
| t4 ;(.n |
| Heate |
I d I
I 3 2 ’l
‘e _ _ ffameOns __ _ _ _ pull _ _ -

t1 / t1 / t1 /. t1 / t1 /
t2
t2 @ t2 2 ¢ t2 setT1 t2
off | %9 off off
on open close low on tout on
o t3 t3 g t3 t3 O 13 t3
f : FlameSensor v : Valve ps : Pressure fw, pw : WarnLight t: Timer sp : Lighter
push
.\ <v.open,sp.on> fl.on t5 ps.low
t1 <sp.off> o <pw.on>
flame_on
t2 >
t4
B3 4 ps.reg
<pw.on>
release t7 6
<v.close,sp.off>
fl.on fl.off
t.tout push <sp.off> <sp.on, t.setT1>
<fw.off> <v.open,sp.on,fw.off> flame_on flame_off
fail

8 § y
19

t.tout

<v.close,l.off,fw.on,t.setT2>
flame_warning

-

I I

Whole ﬁ the assemblage

Events and state
observations
from the assemblage

push
t1

release

\\ Events and state

change notifications
fo other wholes.

Assemblage

flame_on

flame_on

t8

flame_warning

~

Commands to

flame_off

Commands
from other wholes.

TimedIgniter

[Igniter Timer \

t2

3

release

flame_off

—_
o
c
—
|CD
—

flame_on

flame_warning 9

o

ig: igniter t: Timer

t.timeOut
>
<ig.release>

ignition_failed

start ig.flame on

Off > >

<ig.push,t.set> ignition_success

Conclusions

 We surveyed Part-Whole Statecharts, an
evolution of David Harel formalism created
having in mind basic software quality principles;

* By an explicit composition state machine, called

the “whole”, it allows arbitrary composition of
behavioral abstractions;

e Such a formalism exhibits a computable
semantics, which allows to check for safety and

liveness without resorting to model checking
techniques.

Further Development & Research

A method for checking safety & liveness
properties at design time in a state-based design
is patent pending under PCT/EP2008/051300;

* |Incremental safety certification for dependable
system should be feasible with the above
methodology:

— Composing certified components should lead directly
to a new certified system;

— Business model based on safety certification?

Thank you!

