
Electronic Communications of the EASST
Volume X (2010)

Proceedings of the
10th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2010)

Design-Time Model Checking in Part-Whole Statecharts

Luca Pazzi, Marco Pradelli, Matteo Interlandi

3 pages

Guest Editors: Jens Bendisposto, Michael Leuschel, Markus Roggenbach
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Design-Time Model Checking in Part-Whole Statecharts

Luca Pazzi, Marco Pradelli, Matteo Interlandi

University of Modena and Reggio Emilia
Via Vignolese 905, Modena, Italy

luca.pazzi@unimore.it

Abstract: We present recent research concerning model checking applied to an ex-
tension of Statecharts by which it becomes possible at design time to incrementally
compose already verified modules into higher-level assemblies.

Keywords: modularity, compositionality, design-time model checking

1 Extended Abstract

By the traditional Statecharts coordination and communication model it is possible to assemble
a global behavior from component behaviors hosted in separate concurrent modules, by letting
the state machine residing on each component module to act on each other. For example, two
concurrent Statecharts sections, each hosting the behavior of a traffic light, will synchronize by
triggering a transition into a concurrent state machine, which in turn will propagate further events
to the parallel section in order to keep the companion traffic light synchronized. Specifying and
checking formal properties through such a model is usually done by model checking techniques
where the global states of the system are arranged along a tree. Such techniques present the
disadvantage of being loosely related to the design phase and of becoming potentially ineffective
as the number of component behaviors grows.

Part-Whole Statecharts are instead composed by two main sections and have a different com-
munication model [Paz08]. The former section, called assembly section, hosts the set of com-
ponent behaviors, which are not allowed to communicate one with the other and are therefore
deprived of mutual references: coordination among them is instead obtained through a state
machine hosted in the latter section, called whole section. Such a state machine allows the de-
signer to explicitly enforce the desired global behavior, as shown in Figure 1-(a), where the
switchover among the two traffic lights is obtained by moving from state Main Enabled to state
Sec(ondary) Enabled and vice versa, each state denoting one of the two crossing roads enabled.
The global behavior is obtained through list of events directed towards the assembly of com-
ponents, which label state transitions in the whole section and are called actions. For example
transition t2 in Figure 1-(a) triggers traffic light m from R(ed) to G(reen) through action m.go
and traffic light s from G to R through action s.stop. The state machine in the whole section acts
as an interface for further composition.

In a recent research under final refinement [Paz08], we describe a formal method which al-
lows to enforce, at design time, a formal meaning to each state S in the whole section, through
a logical proposition, called state invariant. Such an invariant denotes the set of global states
the components behaviors are allowed to assume when the control is in state S. For example
state Main Enabled is associated to invariant proposition I1 = m.G∧ s.R – meaning that the two

1 / 3 Volume X (2010)



Design-Time Model Checking in Part-Whole Statecharts

t2

t2

t1

Main
Enabled

switch

Sec
Enabled

switch
t3

m: TLight s: TLight

<m.go,s.stop>

<m.stop,s.go>

R G

go

stop

I1 I2

<m.go>

W
ho
le

R G

go

stop

t1
R

stop

G
go

t3

rl: Lamp gl: Lamp

<rl.on,gl.off>

<rl.off,gl.on>

On Off

off

on

I3 I4

<gl.off>

A
ssem

bly
W
hole

On Off

off

on

A
ss
em

bl
y

(a)

(b)

...

I1 = m.G ∧ s.R

I2 = m.R ∧ s.G

I3 = rl.On ∧ gl.Off

I4 = rl.Off ∧ gl.On

Figure 1: A crossroad behavior (a) is assembled by two traffic light behaviors m and s, which
are in turn assembled by two basic lamp behaviors rl and gl (b). State invariants are pictorially
associated with states in the whole section by black triangles.

traffics lights have to be, respectively, red and green. Vice versa, state Sec Enabled is associated
to invariant proposition I2 = m.R∧ s.G – meaning that the two traffics lights have to be, respec-
tively, green and red. The method works by verifying, statically, that state invariants hold by
checking that

1. incoming transitions to a generic state S do not violate the invariant of S;

2. autonomous, i.e. non controllable, transitions (for example being part of the behavior of a
sensor device) which may invalidate the invariant I of state T , are properly handled.

The first check is accomplished by computing, for each state transition t from state S to T , a
transition postcondition p(t), which holds of the global state of the assembly after t takes place.
Proposition p(t) must be implied by I(T ), the invariant of the transition arrival state T . The state
invariant must also be equal to the logical sum of the incoming transition postconditions, that is
I(S) = ∨t∈T (S)p(t), where T (S) is the set of state transitions which have S as final state.

Proposition p(t) is computed by assuming that the assembly of components satisfies I(S),
the invariant of the transition start state T, before t takes place and that each action which is

Proc. AVoCS 2010 2 / 3



ECEASST

associated with t modifies it incrementally resulting in p(t). For example I1 = m.G∧ s.R be-
comes I′1 = m.R∧ s.R after action m.stop takes place, and so on. After performing n actions
〈a1, . . . ,an〉, the starting state invariant I1 is transformed into I(n)

1 = p(t), with a semantics akin to
that of generalized substitutions in the B-Method [Abr96], restricted to assignment and sequen-
tial composition of actions; we are investigating further similarities.

In order to accomplish the second check, we developed an algorithm which is able to deter-
mine, in advance, the set of all the couples (δ ,c), named exit zones, where δ is an autonomous
state transition whose happening may invalidate I when the system satisfies condition c. Specific
transitions departing from T which react to the happening of δ and are guarded by c, have then
be introduced with the aim of bringing the system to a new state complying with a valid state
invariant.

Once state invariants are enforced by the method described above, verification of safety and
liveness properties, such as “both roads are never enabled at the same time” for the system of
Figure 1-(a), can be finally achieved by observing that, since the system control moves only
within the states of the whole section, either I1 or I2, but not both, will hold at any time.

We emphasize that verification is also compositional, since each component behavior is al-
ready verified with respect to its own safety and liveness properties. For example, in Figure 1-(b)
the behavior of a traffic light is built from the behavior of component lamps rl and gl, and sat-
isfies its own state invariants, I3 = rl.On∧gl.Off, associated to state R, and I4 = rl.Off ∧gl.On,
associated to state G. Following modular composition, higher level invariants imply lower level
ones: for example, stating that a “road is stopped” takes for granted that “the red lamp is lit and
the green one is dimmed” without having to check the latter proposition each time the whole
system is assembled from its parts.

Bibliography

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA, 1996.

[Paz08] L. Pazzi. Modular Model Checking in Part-Whole Statecharts. Technical report CRIS-
2008-02-01, 2008. http://cris.unimore.it/cris/files/CRIS-2008-02-01.pdf.

3 / 3 Volume X (2010)


	Extended Abstract

