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Abstract—Behavioral aspects of medical guidelines can be
modeled and formalized in a straightforward way by flow
diagrams. However, safety plays a critical role in both modeling
and formalization given the intermingled involvement of human
actors and medical devices which have to interact and coordinate
according to precise rules and strict timelines. Although state
based formalisms can be shown to be very apt in depicting
complex situations in both an intuitive and formal manner, they
do not provide modular constructs for defeating complexity and
require model checking in order to be verified against safety
requirements. The paper proposes to adopt a modular and
hierarchical state based formalism for the sake of representing
behavioral aspects in medical guidelines. Such a formalism can
be shown to provide a natural arrangement of different fault
management strategies at the different decomposition levels.

I. INTRODUCTION

Medical guidelines have been introduced with the aim of
providing physicians with decision and treatment support in
providing appropriate health care, typically within the context
of evidence-based medicine [1]. Although guidelines often
originate in a textual, narrative form, the implicit nature of
medical care, consisting in taking decisions among alternatives
and issuing actions and treatments towards patients, leads to
a very natural interpretation of guidelines as flow diagrams.
The aim of issuing timely notifications to the different human
actors involved as well as keeping information within patients
records up to date led, in turn, to the attempt of making
guidelines directly executable by a computer engine through
a specific syntax [2].

It becomes then evident that the task of translating guide-
lines in a computer interpretable form bears a strong in-
tersection with the more general problem of modeling and
formalization of complex medical situations. Such situations
involve the mixed interaction of human operators, patients
and computer controlled medical devices. Such interacting
asynchronous actors have to coordinate and interact according
to strict timing deadlines. This in turn requires suitable tools
and primitives in order to control complex tasks without
leading to harm or injury to the human beings involved.
Safety is therefore a challenging and inescapable issue in the
modeling of clinical medical guidelines.

Many safety-related aspects are not evident at first glance
and have to be carefully identified and taken into account.
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Fig. 1. Hierarchical part-whole decomposition of a complex medical
domain allows to implement fault detection and recovery policies at different
decomposition levels.

Safety depends in first place on the timely execution of actions
towards patients, but also on the correct synchronization of
the clinical agents involved in carrying out the different tasks
required by the guideline. Additionally, late or incorrect inter-
pretation of clinical data coming from monitoring devices may
jeopardize patient’s safety as well. Nonetheless, flowchart-like
guideline models may lead to deadlocks or to non terminating
loops: medical teams adopting them may therefore be found
in critical situations in which contradictory, inconsistent or
cyclical actions are issued by the flowchart algorithm to the
team members and to the medical devices involved.

Vice versa, wrong or exceptional actions and signals coming
from both human and computer controlled agents have to be
taken into account in order to undertake alternate recovery
plans: in other words, exceptional events have to be exhaus-
tively foreseen and considered by the flowchart algorithm in
order to issue recovery actions accordingly.



Aim of this paper is to show that the specification and
verification of safety aspects in complex medical guidelines
may be carried out incrementally, starting from hardware
components and ending into more complex coordination mod-
ules, each corresponding to some physical or logical entity
in the domain. The paper shows, moreover, that such a
decomposition is feasible and that each decomposition level
may take into account, in a parallel way, safety and fault
management aspects, ending in fail safe or fail operational [3]
clinical guidelines involving both medical devices and human
operators, as suggested by Figure 1. Finally, the adopted
formalism may be used homogeneously from low level, intra-
device specification, to high level, complex medical contexts.

The paper is structured as follows: in Section II open issues
in the safe modeling of clinical guidelines are examined.
In Section III a proposal for the modular and incremental
modeling of behavior at different specification and safety
levels is formulated and presented through a running example.

II. OPEN ISSUES

A. Safety issues

A novel view of safety as a systemic concept is recently
emerging [4]; in first place, according to such a view, safety
must not be confused with reliability. A reliable medical device
may in fact harm once used incorrectly, for example once
wrong working parameters are set by human operators or by
having it to operate on the wrong patient at the wrong time.

In general a system is safe once (1) it is assembled from
safe/reliable components and (2) its components interact in a
safe manner. In the same way, a safe system, once assembled,
can be used on its turn in order to assemble higher level safe
systems. The safety of a single system depends therefore not
only on the reliability of the single components making it,
but also on the mutual interactions among them. In [5] it
is shown, for example, that a naive assemblage of medical
devices consisting of a blood pump, a valve and a patient’s
pressure monitor is harmful under specific circumstances.

B. Modularity issues

Safe modeling of complex medical domains requires suit-
able conceptual tools for controlling their inherent complexity,
mainly through decompositon. Once a system of interacting
entities is decomposed into less complex, manageable systems,
the resulting behavior can be checked against propositional
safety requirements.

The current model of control and communication, typical of
Harel’s Statecharts [6], requires the component behaviors to
embed references to the other processes: by such an approach,
the planned global behavior may be obtained by simply
allowing any component entity behavior to read an modify
the status of any others.

As a consequence, global behavior tends at being repre-
sented in a fragmented form, by tightly coupled modules.
Figure 3 shows the mutual references, depicted by gray arrows,
among different behavioral processes involved in the example

presented in Section III, where each parallel process is hosted
within a Statecharts’ parallel section.

The main problem with such an approach to process ag-
gregation is that the overall behavior of the system is only
implicitly defined, that is it remains concealed to further
analysis and use. A system behavior obtained through such
a model is in fact difficult to understand, since it is difficult
for the designer to have a complete view of the whole system
behavior scattered into the different component sections. In
addition, the system behavior may potentially either deadlock
or not terminate, due to cross referencing mutual conditions
as well as to infinite, circular successions of state transi-
tions and command broadcasting. It may be finally observed
that component processes are themselves barely reusable and
analysable, since interprocess behavioral references make the
parallel sections tightly bound one to the another.

Such a current way to achieve control and communication
among processes can be referred to as the implicit model of
process aggregation.

In order to verify that system components interact in a safe
way, that is that a safe global behavior is obtained, model
checking techniques [7] have to be employed in the implicit
case defined above. In first place logical temporal safety
formulae have to be specified in order to prescribe a correct,
i.e. safe, logical behavior, then all the feasible interactions
among system components have to be explored. Each local
interaction gives rise to an implicit global state of the system
which must, in turn, comply with such formulae. Specifying
and checking formal properties through model checking tech-
niques becomes however ineffective as the number of involved
device states increases, since the size of the tree depicting all
possible behaviors grows exponentially.

C. Language issues

A natural cost effective solution for implementing clinical
guidelines consists in adopting UML [8] as the modeling
language. Many studies pointed in that directions [9][10].

Both UML state diagrams (adapted from Harel State-
charts [6]) and more general flow diagrams (called activity
diagrams) have been incorporated within the UML with the
aim of describing behavioral aspects of the domain being
modelled. The distinction amongst the two concepts has not
alway been very clear. Typically, Statecharts diagrams describe
the behavior of single entities, while activity diagrams are used
to model the overall coordination amongst interacting entities.
Starting from the first release of UML, activity modeling has
been separated from Statecharts modeling, thus creating a
unnecessary representational dichotomy between intraobject
and extraobject behavior, although an activity graph was pri-
marily intended as a special form of state machine [8]. Such a
distinction has been made even sharper in the latest revision of
the UML language where state machines and activity diagrams
are no longer correlated.

Adopting UML for the purpose of modeling behavioral
aspects of clinical guidelines means losing expressive power
in the modeling of safety critical domains mainly due to the
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Fig. 2. Event flow within Part-Whole Statecharts. In (a) event g triggers transition t2 in PWS P3 which forwards events e and f towards component PWSs
P1 and P2. In (b) event p from component PWS P1 triggers transition t4 in PWS P3 which forwards events q towards component PWS P2 and event h
outside PWS P3. In both cases events are not allowed to travel amongst component PWSs.

above discussed missing capability of UML in providing a
homogenous notion of intra- and interobject state and behavior.

A complex behavioral process may in fact be seen, infor-
mally, as the sum of the single behaviors as well as of the
single states of the entities participating in it.

State is indeed a common representation primitive in most
of eleven guideline models surveyed in [2], meaning either
the patients’ clinical status or the ongoing status of the whole
clinical process.

A unifying view of behavior under a state-based formalisms
would therefore improve the overall modeling process of
medical guidelines. States provide a well definite, although
informal, snapshot of a situation; such a situation can be
formally refined in later stages of software development. States
allow homogeneity in representation by allowing to character-
ize both the status of activities inherent clinical processes —
for example completed, ready, stopped, failed, and so on — as
well as that of humans beings, such as patients, physicians and
other technical operators — for example sick, healthy, ready,
panicked. Finally the status of medical embedded system
devices also can be described effectively by states such as
on, off, pumping, refilling, et cetera.

Another benefit in adopting state diagrams is that they
substitute flow diagrams in a natural way. States depicting
situations act as decision points, since the world can evolve
towards different situations as different events happens or
different conditions are met. State transitons lead to such
situations according to guard conditions, thus implementing
naturally a control flow. Situations, once formalized into states,
can be finally checked against safety formulae.

III. PROPOSAL

The global behavior of interacting entities can be repre-
sented explicitly by Part-Whole Statecharts [11][12] (short-
ened either as PW Statecharts or PWS) created with a radical
commitment towards state-based modularity. The idea behind
their introduction was to have a formalism which could encap-
sulate a compound behavior, forcing the modeler to expose an
interface representing the composed behavior as a whole. The
formalism has been recently complemented by a constraint
based specification method [13]. In the paper a brief account
of PWS syntax and semantics is given through the running
example in the next Section.

Part-Whole Statecharts require to make explicit the repre-
sentation of the interaction among the behavior of parallel state
based processes, contrasting to the implicit way of achieving
process aggregation discussed in Section II-B.

A Part-Whole Statechart consists of two main sections
(Figure 2), one hosting a set of component state machines,
referred to collectively as the assemblage, the another a single
state machine representing the global system behavior, named
“whole” (referred to in the rest of the paper as either the whole
or the whole section of the PWS).

Part-Whole Statecharts forbid mutual knowledge among
component modules in order to preserve self-containment:
any communication and coordination happens therefore “ver-
tically”, from the components to the whole and vice versa, in a
part-whole hierarchical fashion. As shown in Figure 2, control
as well as any mutual knowledge of current state and behavior
is not allowed among component state machines; the state
machine in the whole section is instead allowed to exchange
control commands with them.
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Fig. 3. Implicit modeling of the behavior of the two counterrotating engines
by the ordinary Statecharts model of compositions. Gray arrows show mutual
interrelationships among concurrent modules.

PW Statecharts can be employed, homogeneously at differ-
ent description level. The behavior at each level is therefore
part-of the more complex behaviors at the upper levels.

In the example that follows, PW Statecharts are used to
model, for instance, the safe behavior of a medical device
at different specification levels, namely the specification con-
cerning a modular component of the device and its behavior
(Section III-A), of the device itself (Section III-B) and of a
portion of the medical guideline where the device is employed
(Section III-C).

A. Subdevice behavior

The main behavior of a blood pump consists in alternating
the work of two counterrotating engines.

By the current implicit modeling achieved by traditional
Statecharts the behavior of the two counterrotating engines is
represented by parallel sections which interact with a pair of
timer devices (Figure 3). Once each engine is started, it sets
a timer device to its time-in state. After a definite and fixed
amount of time, the timer moves to a time-out state and sends
a stop command to the engine and a start command to the
other engine, and so on.

Checking the safety of the two engines module requires
to verify that (1) exactly one of the two engines is active at
each time and (2) that the two engines are always used one
after the another. Both requirements can be expressed through
suitable logical temporal formulae and verified through a
model checking algorithm.

Figure 3 shows instead the part-whole modeling of the
behavior of the two engines. The joint assemblage of the two
devies is represented explicitly by an automaton in the lower
section of the PWS. Each of the three explicit states denote a
working state of the two engines taken as a whole. Both can
be stopped (Off state) or exactly one engine is active at each
time (TLeft and TRight state).

1) Syntax: The upper part of the diagram, named assem-
blage section, is separated from the lower part, named whole
section, by a dashed line, meaning that communication is
allowed among the two sections. The assemblage section hosts
the PWSs involved in making the complex behavior, called
components. Each component PWS within the assemblage is
referred to through a unique identifier. Component PWSs are
separated one from the another by a solid line, meaning that
communication is not allowed among them. Each component
PWS in the assemblage section exposes only its interface,
that is it hides implementation and verification details. The
interface of a PWS defines the behavior which can be observed
and prescribed. State transitions in the whole section may be
triggered by both internal (that is coming from the PWSs
which compose the assemblage section) as well as external
(that is coming from external contexts in which the PWS
can be used in further compositions). Transitions are named
external and internal accordingly, the latter being denoted by a
small white dot near the starting state. For example, transitions
t2 and t3 can be triggered by the external events start and
stop, while transitions t3 and t4 are triggered by the internal
event tout.

2) Semantics and Verification: Special state propositions,
called state constraints, are used to to assign univocally a
meaning to each state in the whole section of the PWS.
Three state constraints are for instance used in the PWS of
Figure 4; C1 stands for both engines stopped, while C2 and
C3 for exactly one engine working and the opposite stopped
for exactly the time units taken by the timer in the time-in
state:

1) C1: eR = Stop ∧ eL = Stop;
2) C2: eR = Stop ∧ eL = Run ∧ t = TIn;
3) C3: eR = Run ∧ eR = Stop ∧ t = TIn;
with the aim of assigning a meaning respectively to state

Off, TLeft and TRight. State constraints are graphically
assigned to the states in the diagram by a small black triangle
on the top of the state.

Verification is performed interactively at run time, by com-
paring state constraints and the state diagram in the whole
section. abd is centered around two main tasks:

a) Constraint validity: Each time a transition is drawn
from state S to state T , a check is statically performed at
design time on the compatibility of the transition with the
constraint C of the arrival state S. For example, in Figure 4,
both transitions t2 and t4 have state TLeft as their arrival
state. Since the constraint C2 assigned to TLeft requires
that the left rotating engine must be running, both transitions
have to comply with the requirement, by turning the engine
on as part of the actions specified within the transitions.
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The compatibility of constraints with incoming transitions is
performed by computations on a state proposition algebra.

b) Exception handling computation: Each time a state
constraint C assigned to a state S may be invalidated by
an autonomous, non controllable transition of one of the
assemblage components, a suitable internal transition t having
state S as starting state has to be added with the aim of
moving control out of S once its constraint it no more valid.
For example, in Figure 4, constraint C2 requires the timer
to be in the time-in (TIn) state when the control in state
TLeft. When the timer moves to the time-out (TOut) state
and consequently the constraint in TLeft is no longer valid,
the ad hoc inserted transition t3 moves the control to state state
TRight. an algorithm is used to detect whether all feasible
uncontrollable events which may invalidate a state constraint
are covered by suitable state transitions.

3) Hierarchical Fault Management Mechanism: The main
advantage, among the others, in decomposing an overall
complex behavior by a single, unifying formalism consists
in having events which are allowed to travel uniformly from
lower to higher level context, for example from subdevice
behavior to alarm devices (and therefore to human operators)
in a operating room. Conversely, commands are allowed to
travel the other way around, from very complex context to
simpler ones.

By assembling each level behavior on top of simpler ones, it
is possible implement fault detection and recovery policies at
different decomposition levels, as shown in Figure 1. More-

over, different fault management typologies can be adapted
to the different hierarchical levels according to the different
technologies employed.

At the subdevice level, systems often interact by the syn-
chronous hardware paradigm (also known as time triggered
paradigm [14]), for example the counterrotating engines dis-
cussed above may be controlled by a single logical board.
It also reasonable to assume that such synchronous modules
are composed asynchronously, for example operate jointly
through a message passing communication medium (also
known as event triggered paradigm [14]). Since hardware
devices undergo random faults [3] whose happening is not
predictable except than in statistical terms, synchronous sub-
systems assembled from hardware components result in a
behavior that can be assumed to be fail silent, meaning that
they either work or stop responding. Any other causal or
malicious behavior which can be subsumed under the general
category of byzantine failures, may also be reduced to fail-
silent behaviors by well know techniques.

B. Device behavior

Fail silent behaviors can, on their turn, be detected and
transformed into fail explicit behaviors as part of the spec-
ification of the composition layer which embodies them as
components. It is shown show, as part of the example, that the
fail silent behavior of Figure 4 can become part of the more
complex fail explicit behavior, achieved by explicit fail states.
Such a behavior pertains to the modeling of the entire device,
as shown in Figure 5, which then becomes fail explicit.

According to such a behavior, the device tries to reach a
working state Work by moving the engine module from Start
to TLeft, by transition t2 which sends the start command to the
engine module. For each action sent, there are two possible
failure outcomes: either the commanded component do not
move to the desired state in a given time or it fails silently,
which again means that it takes an indefinitely long time
to complete. On the other hand, since both the components
and the controller operate and communicate asynchronously, it
becomes necessary to achieve, at the programming level, some
form of nonblocking synchronization amongst them. The reg-
ular behavior consists therefore, by negation, in letting some
limited time pass in order for the components to complete the
requested operations, before moving the controller to the final
state of the transition.

Special intermediate wait states are therefore introduced,
like the state W of Figure 5. Let C2 be the original constraint
proposition of the ending state of transition t2. An intermediate
derived proposition C ′

2 can be associated to state W , meaning
“constraint C2 has not been achieved (yet) and less than T
time units have been elapsed”, where T is the maximum
allowed time required to start the engine module.

C. Clinical guideline behavior

Finally, fail explicit devices can be easily intermingled with
human behavior in order to obtain fail safe or fail operational
behavior. By explicitly stating the overall behavior pertinent
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a clinical operational scenario, critical global states in which
devices are required not to fail can be easily identified. In
case of explicit failure, alternate fail operational course of
actions can be easily identified, provided backup devices are
made available as part of the protocol. Fail safe operations can
be also foreseen, provided there exists a safe reachable state
(Figure 6).

IV. CONCLUSION

The paper showed how safety can be enforced starting from
the subdevice level to higher level contexts, by a state based
hierarchical, highly modular, formalism. Such a formalism has
the advantage of making explicit, that is representing by an
global state diagram, mutual interactions among the entities
present at each level. By such an explicit approach, it is
possible to assign state propositions to the global states and
to verify them at design time, instead of model checking the
design at a later development stage [15][16]. It can be ob-
served finally that well-known fault management strategies fit
inherently at the different decomposition levels, thus providing
both an additional, empirical, confirmation of the validity of
the approach and a stimulus for further research.
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