Improving Quality Factors in Model-Based
Embedded Software

Luca Pazzi and Marco Pradelli

University of Modena and Reggio Emilia
Department of Engineering Sciences DIIFUNIMORE
Via Vignolese 905, I-41100 Modena, Italy

{luca.pazzi,marco.pradelli}@unimore.it

Abstract. This paper surveys, mainly through a running example, the
most noticeable features of Part-Whole Statecharts, a formalism origi-
nally conceived with the aim of introducing modularity within the Stat-
echarts formalism in order to solve software quality issues of Harel’s
Statecharts.

1 Introduction

Model based software development calls for dynamic software abstractions which
are both self-contained and easily composable, due to the diagrammatic and
iconic operating modalities of current model-based software development tools.

Although such a shift of paradigm towards self-containedness and compos-
ability is on the top of the wish list of software engineering practitioners, few
progresses towards a new composable paradigm have been achieved since then.
If, on one hand, software modularity principles are well established and accepted,
on the other hand the dream of assembling software application starting from
modules is still unachieved.

Model based software engineering has to deal with the design and simula-
tion of complex systems. Such systems exhibit a complex systemic interactive
behavior and are typically employed in the embedded control of physical entities
and processes. Nowadays modeling tools and techniques allow to assemble black-
box pieces of code in order to implement functional transformation of data. It
should be observed, however, that applications are required to do more than
simply transforming data: they have in fact to implement a complex systemic
interactive behavior. State diagrams, relying essentially on the concepts of state
and state transformation, are a powerful instrument in representing behavior.
States and state transitions furnish indeed the natural abstraction for static situ-
ations and for changes among such situations. States can be seen also as bunch of
properties, state variables, in which the system rests for an amount of time, and
therefore state transitions are implementable through functional transformation
among such state variables. Behavior is therefore more than functional transfor-
mations: its best approximation is through state machines, that is through finite
diagrams of states and state transitions.



2 The Behavioral Composition Issue

Composing behavioral abstraction is however still an open issue in model based
software engineering. In first place we observe that composition in dynamic con-
text consists essentially in achieving synchronization among different modules.
Synchronization issues have been deeply investigated in behavioral formalisms
like CCS [1] and CSP [2]: such seminal investigations led to Harel’s Statecharts
formalism [3], which was in turn adopted by Rumbaugh’s software development
method OMT [4] and by OMG UML since it appeared, becoming the standard
way of achieving behavioral composition among modules.

Despite its widespread success, Harel’s Staecharts suffer from different draw-
backs which, paradoxically, make it an obstacle towards the achievement of soft-
ware quality factors, such as reusability, understandability, maintenance-ability
and testability.

2.1 Composing Behavior by Statecharts

A statechart diagram typically consists of state diagrams, hosted into different
interacting parallel sections, which run concurrently and have to synchronize in
order to achieve a global, meaningful, systemic behaviour. For example, mod-
eling a system of interacting devices is typically achieved by representing the
behavior of each component device by a state diagram hosted within one of the
parallel sections. Statecharts synchronization primitives, like event broadcasting
and mutual condition testing, have to be embedded into component state dia-
grams in order to obtain a systemic representation, which is therefore directly
incorporated within the interacting system components. The use of such syn-
chronization primitives has its roots in hardware composition techniques, which
first were employed in the development of embedded control systems: both rely
in fact on the concept of wires which have to reach different component.

Example An ignition device has to be designed in order to control the ignition
of a flame. Different components must exhibit a coordinate behavior in order to
accomplish the task. We develop a running example starting from a mechanical
device.

The whole ignition process starts by keeping pressed a start button. Two
devices are connected to the button:

1. a spark lighter, which emits a spark against a gas flow once the button is
fully pushed;

2. a spring controlled valve, which turns the gas flow on and off when the
button is, respectively, kept pushed and released. Once the flame is ignited,
its heating dilates the spring controlling the valve return to the close position,
hence the valve remains in its open position.

In other words, the coordinated behavior of the button, the heather and the
valve can be summarized as follows: the user pushes the button, opening the



valve and emitting a spark against the gas flow coming from the opened valve.
If the button is kept pushed for a sufficient amount of time once the flame has
ignited, the return spring of the valve is heated and dilated, hence it does not
return to its initial, closed position. The flame then remains turned on until
either the gas flame stops or it is turned off by accident. In both cases, the metal
of the spring, once not heated for a short amount of time, acquires back its
elastic property causing the valve to shut.
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Fig. 1. Statecharts modeling of a manual ignition device.

Figure 1 shows the statechart model representing the full igniter behavior
as described above. Each component having a meaningful behavior is depicted
by a parallel section in the Statechart. Such sections communicate one with the



another by exchanging events and by testing the state of each other. It can be
observed that event flow as well as mutual testing of state condition (shown in
Figure 1 by gray arrows) follow strictly the causal relationships observed in the
description of the mechanical device. For example, once the event push reaches
the button section, events open and spark are subsequently directed towards the
sections representing the valve and the flame. The flame section represents the
state of the gas burner, which may have a flame turned on or off: observe that
the model accounts for an indefinite number of sparks failing to light the gas
burner, as modeled by the looping state transition ¢3. Observe moreover that
the flame may be turned off either:

1. by an event dim (transition ¢4) which models the causal effect of the valve
being closed (transition ¢3 in the valve section) or

2. by taking at any time state transition ¢5 which models the casual extinguish-
ment of the flame.

Analysis Statecharts control model suffers from different drawbacks when mod-
elling a system behavior out of a set of parallel section hosting system compo-
nents. Such drawbacks can be analysed in terms of software quality factors:

1. the component behavior is barely reusable, due to the fact that behavioral
references make it tightly bound to the other abstractions. In Figure 1, for
example, the spring behavior has effect on the valve behavior, which in turn
depends on the flame behavior, which in turn has again effect on the spring
behavior. Figure 2 depicts dependencies among parallel sections by gray
arrows;

2. the system behavior is difficult to understand, since it is difficult for the
designer to have a complete view of the whole system behavior scattered into
the different component sections. This fact becomes evident by observing
the gray arrows cluttering of Figure 2, where each arrow denotes a part
of the modeled behavior; as a consequence, the system behavior is difficult
to extend, since the addition of a single module requires, potentially, the
addition of behavioral references from and to each existing module;

3. the system behavior may either deadlock or not terminate. This is due to
cross referencing mutual conditions as well as to infinite, circular successions
of state transitions and event broadcasting.

It is evident that, if Point 1 impacts on the reusability of the software being
built around such abstractions, Points 2 and 3 impact not only on the reusability
of the whole behavior, but mainly on safety issues, since it is difficult, at design
time, to know in which state a system will be found at a specific time, and
therefore it is not possible to assess safety constraint against behavior, such as
“when the gas pressure is low or absent the valve must be closed and it must
remain closed even if the pressure returns regular”.
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Fig. 2. Behavioral relationships established among parallel sections by event broadcast
as well as by mutual condition testing.

3 Explicit Modeling by PW Statecharts

Interacting components can be represented by a different state based formalism,
named Part-Whole Statecharts [5][6] (shortened either as PW Statecharts or
PWS), which was created with the aim of allowing an explicit representation of
the interaction among the behavior of parallel state based sections.

A PWS consists of two main sections, one hosting a set of component state
machines, referred collectively to as the assemblage, the another a single state
machine representing the system behavior as a whole, called indeed the whole
state machine.

As shown by the banned gray arrows Figure 3, control as well as any mutual
knowledge of current state and behavior is not allowed among component state
machines; conversely, the system section state machine is allowed to know, at
each time, the current state of each component state machine as well as to send



control commands to them (regular gray arrows). The system machine is finally
notified of each state transition happening within the component set.
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Fig. 3. PWS control flow. Regular and banned gray arrows indicate whether or not
direct control and knowledge is possible among the assemblage and the whole behavioral
sections. Indirect control is however feasible from the assemblage to the whole.

In order to suggest that neither communication nor knowledge is allowed be-
tween component state machines a bold line is drawn among them; conversely,
a dashed line separates the components from the system state machine, in order
to suggest that the system state machine is able to communicate with the com-
ponents. Note, however, that such a communication is asynchronous, since the
whole section state machine is allowed to know each of the component PWSs,
but the reverse does not hold. Component PWSs determine however the behav-
ior of the whole by emitting events towards it or by having the whole know their
internal state: such form control is therefore better classifiable asindirect.

Such communication and knowledge restrictions ensure that behavioral com-
ponent description are self-contained, since they are not allowed to refer to any
of the peer components or to the system state machine. We observe, finally, that
the whole semantics of coordination and communication has to be transferred
to the system state machine section, in such a way that an additional explicit
level of reuse and understandability is made available.

Component Assemblage Section Explicit modeling by the PWS approach
requires components to be deprived of the capability of carrying out direct con-
trol towards other components as well as to have their behavior determined by
the knowledge of the behavior of other components. We obtain thus components
which are self-contained, thus achieving full reusability as observed above.

For example, the parallel Statecharts’” AND sections of Figure 1 have been
reworked in Figure 4, by removing both event forwarding as well as condition
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Fig. 4. An assemblage of state machines for the implementation of the ignition system.

testing amongst the state machines in the parallel sections. The modules within
the assemblage section expose only external details, that is they only show the
states in which each component may be found as well as the transitions among
them. We distinguish among two kinds of transitions:

— non controllable transitions: they often correspond to the automatic behavior
of a generic device or to the sensing behavior of a sensor device: For example,
device f moves from state Off to state On by transitions to and t4: each time
one of the transitions is automatically taken, the corresponding events on
and off are sent to the whole section;

— controllable transitions: they often correspond to the behavior of a generic
actuator device. For example, the device v, corresponding to an electrome-
chanical valve which moves from state Closed to state Open by transitions
to and t4: the transitions are taken once the corresponding events on and off
are sent from the whole section to the component.

Observe that some devices possess both kind of transition: for example, the
timer device t in the assemblage.

‘Whole-Section Behavior. A first draft behavior of the behavior to be enforced
by the whole-section of the ignition system is shown in Figure 5: it consists of
five states, meaning that the whole “ignition system” starts in an initial global
state, named Off, then moves to a state, named Pushed, where different ignition
attempts are tried until either the button is released, causing the system to
return to the initial Off state, or the flame is ignited. In the latter case the
system moves to the flame on state (FL_On) in which the system rests until the
flame is dimmed by any accidental cause. In such a case, the system moves then
to retry state, in which ignition is retried for a definite amount of time, say T}
time units. In case retrying ignition is still unsuccessful after T time units, the
system moves to a warning state FWarn, from which it is either possible to restart
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Fig. 5. A first design of the desired ignition system behavior.

the working cycle by pressing the button or the system turns automatically off
after an interval lasting 75 time unit expired.

3.1 Implementing Behavior

In order to make the behavior of Figure 5 effective, we have to specify addi-
tional details in order to specify which commands have to be forwarded to the
assemblage and how the behavior in the whole section reacts to changes hap-
pening in the assemblage. In order words, by labelling each satte transition by
additional features, we keep the whole and the assemblage section consistent.
In Section 3.2 we give an account of a suggested operational semantics for PW
Statecharts, that is we explain how the implementation features are interpreted
at runtime.

State transition implementation features The diagram allows to observe
implementation features associated with the state transitions, which consist of:

1. a guard, consisting of a boolean valued expression about the global state
of the assemblage, depicted enclosed in square brackets. In case a transition
does not have any guard, it may be thought as being guarded by the boolean
value true;

2. a trigger, that is a symbol (written underlined in the diagram) which denotes
that the transition will be activated upon the receipt of:

(a) an event e sent to the PWS by another PWS having the current PWS
as component, in which case e is named external trigger;

(b) an event c.e sent to the PWS by its component ¢, denoting the happening
of a transition labeled by e within the component ¢ of the assemblage,
in which case either c.e or c.t is named internal trigger (¢ being the
transition name).
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Fig. 6. The implementation of the ignition system behavior of Figure 5.

For example, transition t» and t3 in Figure 6 may be triggered, respectively,
by the external events push and release, while transition ¢4, may be trig-
gered by the internal event f.on, meaning that the event on happened within
component f;

3. a list of actions, that is symbols which are used in order to request the
activation of the state transitions in the assemblage components. We write
c.e in order to require the activation of the triggerable transition labeled by
event e in the component c. For example, transition ¢ in Figure 6 has the
associated list of action (v.open,sp.on), meaning that, when ¢5 is activated,
the transition labeled by open has to be activated within component v and
the transition labeled by on has to be activated within component sp.

4. an optional output event, that is a symbol which will be sent to sent to all the
PWSs which have the current PWS as components in order to notify them
that the transition happened. We write c.e in order to require the activation
of the triggerable transition labeled by event e in the component c.

3.2 Part-Whole Statecharts Operational Semantics

The way in which the whole section of the PWS behaves and the way in which
communication happens among the assemblage and the whole section are deeply
interleaved in describing the global operation of PW Statecharts:

1. the whole section operates through a never ending cycle, which iterates a
computation step during which communication signals sent to the machine
are evaluated and (a possibly empty) set of state transitions are selected
for ezecution; one of such transitions is arbitrarily drawn from the set, and



communication signals are sent to other PWSs as well as a new current state
is computed;

2. PWSs communicate through some communication medium, which again op-
erates through one or more never ending cycles. Such cycles iterate basic
communication operations, which consist, essentially, in delivering commu-
nication signals from one PWS to the another.

Computation step. The computation step consists in first place in checking
whether incoming events (either internal or external) are present for being pro-
cessed. Given an incoming event either internal or external, a (possibly empty)
set of state transitions T is selected for being executed iff for each state transi-
tion in such a set the following conditions are verified:

1. the transition has state s as departing state; and
2. the guard condition is satisfied; and
3. the incoming event matches the transition trigger.

In case T's has more than one element, a state transition is chosen arbitrarily.
State transition execution consists in:

1. delivering the commands (if any) of the command list to the assemblage
components through the communication medium;

2. sending the transition output event (if specified) to all the PWSs which have
the current PWS as component;

3. moving the state machine in the whole to the ending state of the transition,
which becomes the current state of the machine.

PWS extendibility and remodelling We stress that the explicit modeling
approach brings advantages on the software engineering phase of maintenance
and reuse of the global behavior. Given the same set of assemblage components,
we show how the global behavior may be modified given the same set of assem-
blage components as shown in Figure 8.

PWS composition Any PWS may be used, in a straightforward way, as a com-
ponent in higher complexity PWSs. It is in fact possible to extract an interface
from any PWS, that is the state machine which contains only the information
that may be used by external composition context, that is its externally observ-
able behavior. Given an implementation state diagram, like that of Figure 6, we
obtain its interface by:

1. hiding the assemblage component set;
2. hiding any internal trigger, guard, action list from any transition.



In the case of the igniter, for example, the interface may be obtained by
removing component assemblage and the implementation details from the PWS.
Figure 10 shows a fragment of a more complex PWS in which the igniter is
employed. In the depicted diagram, the push action is carried out through a
command sent to the igniter. By adding a timer to the assemblage it is possible
to establish a time limit to the ignition attempts. Such a property was not
part of the design of the ignition device, where it is possible to persist in the
ignition attempts for an undefinite amount of time (i.e. until a release command
is issued). The informal meaning of the behavior fragment in the whole section
of Figure 10 is therefore: “when the system is in state Off it is possible to send
a start command to the igniter, which either has to start within 7" time units or
fail”.

4 Conclusions and Further Work

The paper surveyed, mainly through a running example, the most noticeable
features of Part-Whole Statecharts, a formalism originally conceived with the
aim of introducing modularity within the Statecharts formalism in order to solve
software quality issues in Harel’s Statecharts.

The authors are currently working on a patent pending methodology, which
should allow to check, at design time, whether the design complies with state-
based propositions. Describing such a methodology was outside the scope of the
paper, mainly focused on software quality factors. The reader is referred to [7]
for a first report illustrating it.

We give however a final sample account of the rationale of such a method,
applied to the running example. Suppose state PWarn of Figure 8, aimed at
denoting the situation in which a gas pressure leak is detected and signalled, is
specified by the proposition p “the gas pressure is Low and the warning light
is On and the flame is On”. The methodology would then be able to detect
whether any incoming transition to state PWarn agrees with such a proposition
as well as to check whether any uncontrollable event in the assemblage is able
to falsify the proposition. In such a case, the designer will be asked to insert
the appropriate number of internally triggered transitions in the whole section
in order to account for such violations of the state invariant proposition. In case
the current state of the whole is PWarn, having p as invariant, it can be easily
verified that in case the flame turn off p is not verified anymore. The designer has
therefore to insert an ad hoc transition leaving PWarn, triggered by the internal
event denoting the flame going off and moving the control to another state. The
design correcting such an inconsistency is shown in Figure 11.
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Fig. 8. An exercise in extendibility: a new pressure warning state PWarn has been
added to the device (compare with Figure 6).
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Fig.11. A revised design accounting for flame dim off when the ignition device is in
state PWarn.



