
Part-Whole Hierarchical Modularization of
Fault-Tolerant and Goal-Based Autonomic

Systems

Luca Pazzi ∗ Marco Pradelli ∗∗

∗University of Modena and Reggio Emilia, Department of Engineering
Sciences DII-UNIMORE, Via Vignolese 905, I-41100 Modena, Italy

(e-mail: luca.pazzi@unimore.it)
∗∗University of Modena and Reggio Emilia, Department of Engineering
Sciences DII-UNIMORE, Via Vignolese 905, I-41100 Modena, Italy

(e-mail: marco.pradelli@unimore.it)

Abstract: The paper examines current trends in autonomic space software systems and
proposes the adoption of a hierarchical state based formalism which allows the different
paradigms employed in the field to meet seamlessly. It is not clear, for example, how goal-
based on-board autonomy, originally conceived for deductive-flavored systems which may not
be ground controlled for indefinite portions of time, be able to combine with model based
engineering, which best fits current industrial design strategies. Other aspects, such as closed
loop discrete control and fault tolerance do not easily lend themselves to modularity. The paper
shows that, by employing the proposed formalism, goals can be decomposed and distributed in a
very natural way among different modules. Each module is, at the same time, both a controller
and a controllable part of the whole system, allowing to partition the closed loop control flow
at different levels of complexity. Formal verification is also possible by employing goals as state
based constraint in the implementation phase.

Keywords: Device degradation, dependable systems, Part-Whole Statecharts, goal-based
approach, reusable subsystems, constraint-based control, model-based.

1. INTRODUCTION

Recent trends in space software engineering see a growing
interest towards model-based software and, at the same
time, towards methods which allow to specify the software
starting from high-level objectives. The idea is to oper-
ate a system at the level of explicit intent [Chien et al.
(2000)] and, at the same time, to have a model-based
representation of low-level operational details needed in
order to accomplish the high-level goals. Such a twofold
autonomic approach, often referred to as goal-based (GB)
control, seems particularly appealing in space missions, in
order to improve the capabilities and robustness of on-
board systems, simplifying their operations and allowing
them to operate in absence of human operators. In place
of traditional ground originated command sequencing, the
spacecraft on-board control system should therefore take
autonomously decisions on the activities to be performed
depending on both unplanned events and overall mission
goals [Truszkowski et al. (2006)], thus implementing vary-
ing levels of on-board autonomy, including Fault Detec-
tion, Isolation and Recovery (FDIR) capabilities.

By the GB approach, a goal is typically a “system state
configuration” [Bennett et al. (2008)] and low-level control
strategies have to be built “on the fly”, i.e. dynamically, to
track system state, diagnose faults, and perform reconfig-
urations according to the declarative model of the plant,
through propositional inference [Williams et al. (2003)].

In other words, system programming is well distinguished
from system execution, the former stating high level objec-
tives, the latter “trying to transition the system toward a
global state that satisfies the configuration goals” accord-
ing to a model of the plant [Truszkowski et al. (2006)].
Figure 1 (a) depicts a simplified representation of the
corresponding control loop.

Modularization concerns arise from the above drafted ap-
proach. It is not clear in fact how to build independent,
reusable subsystems by which the monolithic schema of
Figure 1 (a) can be decomposed. Although it is clear that
the different constituents of the approach lend themselves,
individually, to modular decomposition, the different na-
ture of the employed paradigms, mainly goal/deductive
and state-based, together with the closed-loop nature of
control, do not seem to integrate well. For example, goals
can be decomposed in a natural way, since their accom-
plishment can be subdivided, hierarchically, into a net-
work of subgoals. Although such a goal decomposition has
been clearly identified, it is not clear how to distribute it
coherently within a modular decomposition. Goals are in
fact also subject to strict timing and duration, as well as
to mutual dependencies among them; activities performed
in order to realize them, whether programmed explicitly
or specified by a constraint-based control language like
RMPL [Williams et al. (2003)], necessarily have to be
consistent with subsystems and hence reside within re-
lated modules. Further difficulties in achieving modular-

(a)

observations

Goals

Deductive Controller

State-based
model

Plant

commands

(b)

State
transition

notification
Commanded
behavior

Component
behavior

observation

Component
behavior
(re)action

Goal-based
implementation

State interface

12

3 4

Fig. 1. Canonical goal based/deductive architecture and
its control loop (a), Part-Whole Statecharts modular
architecture (b).

ity requirements are given by the incorporation of FDIR
techniques into hardware and software. Maintainable and
extendable FDIR designs are indeed not available for reuse
by different space projects designers mainly since they
require tight hardware and software integration and since a
coherent model of reactive behavioral decomposition poses
still unresolved conceptual difficulties.

2. ARCHITECTURAL PROPOSAL

Part-Whole Statecharts (PWSs) [Pazzi (1997), Pazzi
(2000)] are employed in the paper in order to develop
autonomous, safety-critical systems in a way that allows
an effective modular state-based system decomposition.
A PWS system is assembled by composing, recursively,
already specified PWS subsystems.

The basic composition mechanism is centered around an
extended state diagram hosted within the PWS module,
called whole, whose details are described in Pazzi (2008),
which abides to specific state configuration constraints and
accomplishes a twofold purpose: on one hand it coordinates
the behavior of a set of PWSs, called components, by
sending them appropriate logical signals, on the other
hand it provides a state interface which is able to receive,
on its turn, appropriate logical signals from other PWSs.

A PWS is therefore both a controller and a controlled en-
tity: the two roles coexist seamlessy and can be visualized
by considering an internal implementation as opposed to
an external interface. The overall software architecture
is built up by having the implementation part of one
PWS connected to the interface of other PWSs through
four kinds of logical ports, depicted in Figure 1 (b). The
different system components operate asynchronously in a
nonblocking discrete event communication environment,
such as a field bus. The four kinds of logical ports shown
above can be implemented through mutex or read-write
blocks of memory shared among the different asynchronous
execution and communication tasks.

The behavior of a PWS consists of state changes occurring
within the modules’ state machines induced by the mutual
exchange of commands and notification signals exchanged
through the ports. In the portion of the PWS which im-
plements the behavior, logical signals named commands
are issued towards component PWSs through port num-
ber 1 in order to request them to take state transitions
according to the interface. The implementation portion

Goal-based
implementation

State interface
3 4

Goal-based
implementation

State interface

State interface

Hardware

State interface

Hardware

A

RocketB

CameraEngine
System

Orbital
Insertion
System

12

3 4

12

3 4 3

State interface

Hardware

3 4

4

RocketA

Fig. 2. Hierarchical part-whole arrangement of modules
which realize the orbital insertion system.

is made aware of the current state and behavior of the
components by receiving notification signals through port
number 2. In a complementary way, the portion which acts
as an interface sends notification signals to other PWSs
trough port number 3 and receives commands through
port number 4.

2.1 Example

A typical part-whole arrangement of communicating PWS
modules is shown in Figure 2, where the orbital insertion
of a spacecraft, taken from the example in Williams
et al. (2003), requires to thrust a rocket engine after
having retracted a science camera in order to avoid plume
contamination.

Three special PWS modules (Camera, RocketA and Rock-
etB) do not control further modules on their own. Such
modules define only the interface portion of the PWS,
since they may be thought of as being either some sort
of “hardware driver” – as in case of the camera driver
module – or to provide a state machine interface to non
decomposable subsystems – such as time-driven ensembles.
Rocket engines are for example constituted by further
components which require tight timing integration and
therefore are seen as an integrated, monolithic, time-driven
block. The orbital insertion system module on the bottom
of the hierarchy makes finally available its interface portion
in order to be further composed in more complex control
and coordination system modules.

2.2 Behavioral Patterns

As observed, one of the difficulties in modularizing mono-
lithic closed loop control consists in decomposing the
mechanism by which control and feedback are exchanged
among the plant and the controlling system. It can be
observed that two basic behavioral patterns are feasible
from event flow across interconnected modules:

(1) Figure 3 (a) shows the basic reactive pattern, where
a signal coming from one of the component PWSs
triggers a transition in the internal state machine.
Such a state transition in turn emits commands

12
Goal-based

implementation

State interface
3 4

...
trigger feedback

notification

12
Goal-based

implementation

State interface
3 4

...
compound action

notification trigger

(a) (b)

Fig. 3. Basic behavioral reactive (a) and propagation (b)
pattern.

towards the components and emits a notification
towards the PWS which has the current PWS as
component;

(2) Figure 3 (b) shows instead the basic propagation
pattern, where a signal coming from one of the PWSs
which have the current PWS as component triggers
a transition in the internal state machine. Such a
state transition in turn emits commands towards the
components and emits a notification back to the PWS
which has the current PW as component.

The overall control flow may be therefore seen as dis-
tributed along multiple levels. For example, in Figure 2,
logical signals may travel upward and downward the hier-
archy amongst modules. Different control loops may be
established, at the same time, among modules at each
level: for example commands may be exchanged among
the orbital insertion system and the engine system, which
in turn propagates further logical commands towards the
rocket engines at the top. Notification of success or failure
travel at the same time downwards, from the rocket en-
gine to the engine system, which may send back upward
commands to the rocket engines and, at the same time,
downward failure or success notification to the orbital
insertion system.

2.3 Goal-based implementation

Another difficulty in achieving full modularity consists in
the appropriate distribution of goals amongst modules.
Part-Whole Statecharts can be shown to lend themselves
towards a natural interpretation of goals as state con-
straints which seamlessly integrate with state based im-
plementation. Each goal to be achieved by the system can
be in fact translated to a specific state configuration of one
of its modules.

By considering the lowest PWS module in the hierarchy
of Figure 2, which implements the coordinated operation
of the camera and the engine system, moving the system
from a configuration in which the camera is extended and
the engine is stopped to one in which the camera has
been retracted and the engine thrusts. An intermediate
configuration must be traversed, in which the camera is
already retracted and the engines are ready to thrust.

Figure 4 shows the Part-Whole Statechart describing the
implementation of the orbital insertion system. The lower
half of the PWS diagram depicts the implementation
details of the system module, while the upper half of

t4

t5

Off Rdy

c: Camera e: EngineSys

t2

t1

In

t3

Out

out
in

<c.in,e.stdby>t1 C1 C2
t2

t3

t2

t1

Off

t3

StBy

off
stdby Ign

off

ign

Ign

C3

t4

t5

<c.out,e.off>

start

abort

igniteturnOff
<e.ign><c.out,e.off>

Fig. 4. The state machine describing the implementation
of the orbital insertion system through the interfaces
of its two immediate upper level components.

the diagram depicts the state machine interfaces of the
component modules. The control is achieved through three
states, namely Off, Rdy and Ign, each corresponding to a
specific configuration of the states of the component sys-
tems. Three main goals associated to the orbital insertion
module can be envisaged, namely:

(1) C1: the engine is turned off and the camera arm is
extended;

(2) C2: the engine is ready to fire and the camera arm is
retracted;

(3) C3: the engine is thrusting and the camera arm is
retracted;

Each goal is assigned to a state in the PWS state diagram,
as shown graphically by a black triangle pointing to the
state. State transitions may be triggered by actions coming
from other PWSs and are labelled by actions to be directed
towards the components of the PWS. The main rationale
of the PWS approach is that, as the controller moves
among its constituent states, components change their
current state according to the commands associated within
the state transitions in such a way that the corresponding
state constraints are satisfied, in which case the PWS is
said to correctly specified. A patent pending method for
building correctly specified PW Statecharts is reported
in Pazzi (2008).

2.4 Basic Fault Detection Mechanism

A fault can be defined as the impossibility to achieve a
goal by a controller module, in a given time, due to the
unexpected behavior of some of its components.

Consider a system trying to reach a goal C through a
transition which commands actions to the system compo-
nents. For example, by transition t2 in Figure 4 the ignition
system is required to retract the camera and to put the

t2''

t3

t2

<c.in,e.stdby,t.set>
Off

C1

Rdy

C2

W

¬C2 ∧ TIn

[C2]

[TOut]

Fail

t1

TOut TIn

set

toutt: Timere: EngineSysc: Camera

......

t2 t2'

Fig. 5. Basic synchronization and failure detection schema
through an additional wait state W and a Timer
component.

engine system in standby mode, thus accomplishing the
goal for such a transition.

For each action sent, there are two possible failure out-
comes: the commanded component either do not move to
the desired state in a given time or it fails silently, which
again means that it takes an indefinitely long time to com-
plete. On the other hand, since both the components and
the controller operate and communicate asynchronously, it
becomes necessary to achieve, at the programming level,
some form of nonblocking synchronization amongst them.
The regular behavior consists therefore, by negation, in
letting some limited time pass in order for the components
to complete the requested operations, before moving the
controller to the final state of the transition.

Special intermediate wait states are therefore introduced,
like the state W of Figure 5. Let C be the original
goal proposition of the ending state of transition t2. An
intermediate derived proposition C ′ can be associated to
state W , meaning “goal C has not been achieved (yet)
and less that T time units have been elapsed”, where T is
the maximum expected time required to accomplish both
camera retraction and engine standby. By adding a special
“Timer” synchronous state machine, like the one depicted
in the same picture, it becomes possible to translate timing
issues into state machine behavior, thus having to deal
with a unique paradigm. A timer is indeed a state machine
which can be moved, synchronously, to a time in state
by a set command issued to it as part of the action list
associated to the transition. When a specific time interval
has passed (for simplicity it is supposed that a specific
timer is defined for a stated fixed time interval), the timer
returns to its initial time out state.

2.5 Implementing Compound FDIR

The nature of the part-whole paradigm allows to have
FDIR strategies distributed and partitioned along the
hierarchy by modular, self-contained component FDIR
strategies. Component off-the-shelf FDIR strategies may
be assembled, as part of the overall component behavior,
in order to achieve higher-level FDIR strategies.

Two feasible approaches in dealing with recovery strategies
are envisaged:

(1) Recovery strategies may be attempted autonomously
by the system and, in case such attempts fail addi-
tionally, the system reaches an explicit fail state;

(2) Recovery strategies are made available by the system
starting from the explicit fail state; such strategies
must then be commanded as part of the external
driven behavior.

An example of the former approach is presented by apply-
ing the fault detection mechanism shown in Figure 5 to
the engine system of Figure 4. The resulting self-healing
FDIR behavior is hidden and totally self-contained within
the implementation.

Figure 6 shows how the transition t4 from the stand-by
(StdBy) to the ignited (Ign) state of the engine system
may be extended by inserting intermediate fault detection
states, in such a way that the transition either ends
explicitly in a success or in a fail state. The idea is to
attempt an autonomous fault recovery after the first rocket
ignition attempt fails. The system starts in the StdBy
state satisfying the state constraint proposition “engine
A is in state standby and engine B is in state standby
and the timer is in state timeout”. A conjunction of basic
state propositions can be written as a triple: in this way,
the initial configuration is given by (StdBy,StdBy,Tout).
After the ignition command is sent to the main rocket, the
system moves to the wait state W1 and waits until either it
successfully ignites or a timeout signal is received from the
timer. In the former case, the system moves to the Ign final
state, in the latter it moves to the fail state FailA, meaning
that the first rocket failed. The fail recovery strategy then
starts automatically by the transition t

(3)
4 which send an

ignition command to the backup rocket and moves to wait
state W2. The system again waits until either success or
failure are signalled by the component or by the timer
In the former case it moves to the final states Ign or
FailB. It may be observed that state Ign is, coherently
with incoming transitions, labeled by a constraint which
states exactly the goal for the self-healing system: in such
a way a goal becomes part of a state based design, allowing
it to be reached as part of the module execution.

3. CONCLUSIONS

The paper showed, mainly through examples, how layered
system modularization by Part-Whole Statecharts achieve
a tight integration of the different modeling paradigms
employed for fault tolerant autonomic systems. The main
point in employing the PWS state-based paradigm consists
in the fact that each module is, at the same time, both
a controller system and a system under control, thus
allowing a multi-level decomposed control loop. Each PWS
module is moreover implemented through state constraints
which, on their turn, represent the goals to be achieved
by the autonomic behavior. The paper showed finally
how information hiding features within PW Statecharts
allow to hide fault detection and recovery strategies within
the modules, thus allowing them to be further assembled
into more complex recovery strategies as the modules are
assembled into more complex systems.

Std
By

(Stdby,Stdby,Tout)

W1

(Stdby,Stdby,Tin)

ign
<ra.fire,t.set>

t4

Fail
A

(Stdby,Stdby,TOut)

[rb=Firing]

[t=TOut]

Ign

(Firing,Stdby,Tin) || (Stdby,Firing,Tin)

<rb.fire,t.set>

[rb=Firing]

W2

(Stdby,Stdby,Tin)

Fail
B

(Stdby,Stdby,TOut)

[t=TOut]

t3

t2
t1

TOut TIn

set

toutt: Timerrb: Rocketra: Rocket

......

t4(1)

t4(2)

t4(3)

t4(4)

t4(5)

Fig. 6. Ignition of a fault tolerant engine system employing a backup rocket engine.

REFERENCES

Bennett, M., Dvorak, D., Hutcherson, J., Ingham, M.,
Rasmussen, R., and Wagner, D. (2008). An architectural
pattern for goal-based control. Aerospace Conference,
2008 IEEE, 1–17. doi:10.1109/AERO.2008.4526594.

Chien, S., Rabideau, G., Knight, R., Sherwood, R., En-
gelhardt, B., Mutz, D., Estlin, T., Smith, B., Fisher,
F., Barrett, T., Stebbins, G., and Tran, D. (2000).
Automated planning and scheduling for space mission
operations. In Proceedings of SpaceOps 2000, Toulouse,
France.

Pazzi, L. (1997). Extending statecharts for representing
parts and wholes. In Proceedings of the EuroMicro-97
Conference, Budapest, Hungary.

Pazzi, L. (2000). Part-whole statecharts for the explicit
representation of compound behaviors. In Proceedings
of the UML 2000 Conference, York (UK), volume 1939
of LNCS, 541–555. Springer.

Pazzi, L. (2008). A method for ensuring safety
and liveness rules in a state-based design,
http://cris.unimore.it/cris/files/2008-02-01.pdf.
Technical Report CRIS-2008-02-01. Patent pending
PCT/EP2008/051300.

Truszkowski, W., Hinchey, M., Rash, J., and Rouff,
C. (2006). Autonomous and autonomic systems: a
paradigm for future space exploration missions. Sys-
tems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 36(3), 279–291. doi:
10.1109/TSMCC.2006.871600.

Williams, B., Ingham, M., Chung, S., and Elliott,
P. (2003). Model-based programming of intelli-
gent embedded systems and robotic space explor-
ers. Proceedings of the IEEE, 91(1), 212–237. doi:
10.1109/JPROC.2002.805828.

