
A state-based systemic view of behaviour for safe medical computer applications

Luca Pazzi, Marco Pradelli
University of Modena and Reggio Emilia

Department of Engineering Sciences
Via Vignolese 905, I-41100 Modena, Italy

luca.pazzi@unimore.it

Abstract

The paper addresses safety issues involved in making ad
hoc interconnections among medical devices in order to as-
semble more complex medical systems. The main problem
is that the systemic view may be easily concealed by nowa-
days behavioral modeling tools. Missing such a systemic
view does not allow to have a precise view of what is being
modeled: we propose instead to adopt novel methodolog-
ical guidelines in developing assembled medical systems,
basically by showing how a a clear and unambiguous se-
mantics may be given for any state of the system being mod-
eled, from specification to test phases. Such a state seman-
tics may then be checked against safety axioms by simply
visiting the state diagram without the need of resorting to
model checking techniques.

Recent directions in the development of computer sys-
tems for medical application [3] show a growing interest to-
wards networking medical devices having embedded com-
puters. The availability of mature interconnecting technolo-
gies, typically distributed object middleware, allows indeed
a great flexibility in interconnecting control and sensing de-
vices. The result is a system of interconnected medical de-
vices, which may exercise control toward other devices in
the network and which are controllable, on their turn, by
human operators.

Such a new generation of distributed medical systems
presents numerous opportunities as well as challenges. Op-
portunities are given by the reduced cost of systems, as
they should benefit from off-the-shelf components and soft-
ware. Challenges are given by the development, certifica-
tion and medical practice-driven models for the high con-
fidence medical software resulting from such a heteroge-
neous system integration, which has to keep in consider-
ation, in addition, the presence of human operators in the
loop. In the medical case, the difficulties inherent system
integration are further worsened, since such systems are of-
ten assembled in order to support life-critical applications

and, in any case, may endanger patient life.
In order to assemble a global behavior by a network of

medical devices, the control software on each machine must
be aware of the current status of the other machines in the
network. Moreover, such software must be able, typically
through network signals or messages, to act on the other
machines in addition to the machine on which it resides, in
order to achieve some global result. For example, the speed
of an injecting pump may be raised or lowered due to the
sensed status of the patient, alarm devices may be activated
and devices may be hot-swapped in case of malfunction-
ing, in order to increase the reliability of the system. An
additional level of complexity is finally given by the fact
that machines, due to their internal logic, may refuse to ac-
knowledge an action request coming from another machine.

By a closer analysis, dealing with such an unconstrained
architecture of computer based medical devices raises two
kinds of distinct, albeit related, problems. On one hand,
software related problems are raised by the need of employ-
ing software which is not behaviorally self-contained, that
is, which depends on the behavior of other machines. In
other words, software becomes difficult to specify, design,
test, reuse and finally certify, given the need of considering
its behavior in the enlarged context drafted above. On the
other hand, operational problems are raised, since it is dif-
ficult to predict which global status will be reached by the
networked system, thus jeopardizing the overall safety and
liveness of the assembled system.

1 System Modeling by ordinary Statecharts

The Statecharts state-based formalism [1] is currently
used for system behavioral modelling in most of current
software development methods, since Rumbaugh’s Object
Modeling Tool (OMT) [7]. A statechart diagram typically
consists of state diagrams, hosted into different interacting
parallel sections, which run concurrently and have to syn-
chronize in order to achieve a global, meaningful, systemic
behaviour. Modeling a system of interacting devices is typi-



cally achieved by representing the behavior of each compo-
nent device by a state diagram hosted within one of the par-
allel sections. Statecharts synchronization primitives, like
event broadcasting and mutual condition testing, have to be
embedded into component state diagrams in order to obtain
a systemic representation, which is therefore directly incor-
porated within the interacting system components.

For example consider a simple system constituted by an
infusion pump, an antireflux valve and a patient-pressure
monitor. The designer wants to enforce a global behavior
such that the valve has to be opened before the pump starts
and to be closed after it stops: it is further required that the
pressure be always under a certain threshold. Such a system
may be modelled by Statecharts as shown in Figure 1, where
the pump section, upon arrival of start and stop commands
propagates, respectively, open and close commands to the
valve, which in turn may not take one of the commanded
transitions in case pressure is high. In case the pressure
level goes up when the pump is working and the valve is
open, a stop command is sent from the pressure sensor to the
pump and a start command is sent again when low pressure
condition is restored.

t2

t1

Stop

t3

On

start / open
stop / close t2

t1

High

t3

Low

t2t1

Open

t3

Closed

pump

valve

pressure

[p=Low] open

close

/ stop/ start

Figure 1. Behavioral modelling of a system
made of three components, a pump, a valve
and a pressure sensor each hosted within a
parallel statecharts section.

Statecharts control models suffer from different draw-
backs when modelling a system behavior out of a set of
components:

1. the component behavior is barely reusable, under-
standable as well as manutenable, due to the fact that

behavioral references make it tightly bound to the other
abstractions. In Figure 1, for example, the pump be-
havior has effect on the valve behavior, which in turn
depends on the pressure sensor behavior, which in turn
has again effect on the pump behavior.

2. the system behavior is difficult to understand, since it
is difficult for the designer to have a complete view of
the whole system behavior scattered into the different
component sections. As an example, a deeper analysis
of the behavior of Figure 1 reveals details that may not
be evident at first glance, in particular (1) the pump
may be started even if the valve is not opened and (2)
the start command sent from the pressure sensor to the
pump may activate the pump at any time, not only if
the pump was stopped due to a pressure surge.

3. the system behavior may either deadlock or not termi-
nate. This is due to cross referencing mutual condi-
tions as well as to infinite, circular successions of state
transitions and command broadcasting.

It is evident that, if Point 1 impacts on the reusability of
the software being built around such abstractions, Points 2
and 3 impact not only on the reusability of the whole be-
havior, but mainly on safety issues, since it is difficult, at
design time, to know in which state a system will be found
at a specific time, and therefore it is not possible to assess
safety constraint against behavior.

Safety issues in medical systems are nowadays addressed
by model checking techniques [2], that is by exhaustively
checking all the possible reachable system configurations,
in order to verify that the model is deadlock free and that
basic modelling assumptions, such as “the pump is off and
the valve is closed when pressure is high”, are verified. Al-
though recent model checking techniques alleviate the com-
putational burden [8], model checking is however not feasi-
ble for all models and requires the designer to manage com-
plex temporal logic formulae without, as remarked above,
having a complete view of the behavior being modeled.

2 System Modeling by PW Statecharts

Networks of interacting components can be also repre-
sented by means of a different state based formalism, named
Part-Whole Statecharts [4][5] (shortened either as PW Stat-
echarts or PWS), which was created with the aim of allow-
ing an explicit representation of the interaction among the
behavior of parallel state based sections. A revised version
of the formalism is presented in this paper, complemented
by a constraint based specification method [6].

A PWS consists of two main sections, one hosting a set
of component state machines, referred collectively to as the



As
se

m
bl

ag
e

System Section

component component component

Figure 2. PWS control flow. Gray arrows indi-
cate whether or not control and knowledge is
possible among parallel behavioral sections.

assemblage, the another a single state machine representing
the system behavior, called the system state machine. As
shown in Figure 2, control as well as any mutual knowl-
edge of current state and behavior is not allowed among
component state machines; conversely, the system section
state machine is allowed to know, at each time, the current
state of each component state machine as well as to send
control commands to them. The system machine is finally
notified of each state transition happening within the com-
ponent set.

In order to suggest that neither communication nor
knowledge is allowed between component state machines
a bold line is drawn among them; conversely, a dashed line
separates the components from the system state machine,
in order to suggest that the system state machine is able to
communicate with the components.

Such communication and knowledge restrictions ensure
that behavioral component description are self-contained,
since they are not allowed to refer to any of the peer com-
ponents or to the system state machine. As a side effect,
the whole semantics of coordination and communication is
gathered within the system state machine.

The example of Figure 1 has been reworked in the PWS
of Figure 3, by removing both event forwarding as well as
condition testing amongst the state machines in the parallel
sections. In other words, components are deprived of the
capability of carrying out control towards other components
as well as to have their behavior determined by knowing the
behavior of other components. We obtain thus components
which are self-contained, thus achieving reusability among
other software engineering advantages.

The whole behavior of the system is represented explic-
itly in the system section of Figure 3: it consists of two
states, meaning that the whole “pumping system” may be
either in a stopped state, named Stop, or in a working state,

t2

t2

t1

Stop

t3

On

start 
stop t2

t1

Closed

t3

Open

open
close

t2

t1

High

t3

Low

p v ps

Stop On

on

stop

< v.open, p.on >

< p.stop, v.close >t1

t3

[ps=Low]

high
low

Figure 3. Explicit modelling of a system made
of three components, a pump, a valve and a
pressure sensor. The state machine under
the dashed line is called “system” and de-
picts the behavior of the whole system.

named On. A revised design according to the methodolog-
ical guidelines of Section 3, is presented in Figure 4. Both
Figure 3 and 4 show also implementation features associ-
ated with the state transitions, which consist of:

1. a guard, consisting of a boolean valued expression
enclosed in square brackets about the global state of
the assemblage, which will be defined a state proposi-
tion. For example, transition t2 is guarded by the state
proposition “the pressure is low”, while transition t3
does not have any guard, hence it may be thought of
as being guarded by the constant expression which de-
notes the boolean value true;

2. a trigger, that is a symbol (written underlined in the
diagram) which denotes that the transition will be ac-
tivated upon the receipt of:

(a) an event e sent to the PWS by another PWS hav-
ing the current PWS as component, in which
case e is named external trigger;

(b) an event c.e sent to the PWS by its component
c, denoting the happening of a transition labeled
by e within the component c of the assemblage,
in which case either c.e or c.t is named internal
trigger (t being the transition name).



For example, transition t2 and t3 in Figure 3 may be
triggered, respectively, by the external events on and
stop, while transition t4 and t6 in Figure 4 may be trig-
gered, respectively, by the internal events ps.low and
ps.high;

3. a list of actions, that is symbols which are used in or-
der to request the activation of the state transitions in
the assemblage components. We write c.e in order to
require the activation of the triggerable transition la-
beled by event e in the component c. For example,
transition t2 in Figure 3 has the associated list of action
〈v.open, p.on〉, meaning that, when t2 is activated, the
transition labeled by open has to be activated within
component v and the transition labeled by on has to be
activated within component p.

Finally, an automatic transition, denoted by an hollow
dot at the beginning of the transition arrow in the state di-
agram, is either a transition having no external trigger or
no triggers at all: in the latter case it is activated as soon
as possible. For example, the pressure sensor may take au-
tonomously state transitions t3 and t2 (Figure 3) and the
system state diagram state transitions t4 and t6 (Figure 4).

3 Modelling safety explicitly

Amongst the different advantages which are feasible
with the explicit modeling of the behaviour of a complex
system, we show how state propositions may be used to
specify, as well as to enforce, the whole system behavior. In
other words, when the PWS is within one of the states of the
system state machine section, a correspondent state propo-
sition is guaranteed to be always verified. It follows that the
behavior of the system can be checked against other state
propositions, named safety axioms, denoting system wide
specification of safe behavior, by examining a finite num-
ber of states, namely the ones within the system diagram.

For example, consider the two states in the system sec-
tion of Figure 3. We may say that we want that, (1) when the
system is in state Stop, “the pump must be off and the valve
closed”; (2) when the system is in state On, “the pump must
be on and the valve must be open and the pressure level must
be low”. Given such an assignment of state propositions
to the system state machine, it can be easily verified that a
safety axiom of the kind “when the pressure level is low the
pump must be stopped and the valve must be closed” log-
ically follows from the state propositions associated to the
states of the system section and hence it is always verified.

3.1 Definitions

The set A = {c1, . . . , cN} of component devices is
called assemblage. QA = {Qc1 × . . . × QcN

} is the set

of global states of the assemblage, where Qci
is the set of

states of the assemblage component ci. A state proposi-
tion P is a function from the powerset built from the set of
global states QA of the assemblage to a boolean value, in
symbols P : 2QA → {true, false}. A state propositions
of the form “component c is in state S”, with S ∈ Qc, is
said a basic state proposition and is written Sc. Composite
state propositions can be formed starting from basic ones
by means of ordinary logical operators �, ⊕, ¬ and form
a boolean algebra, hence it exists a partial ordering among
state propositions denoted by �, which can be read as “is
implied by”. We say that p1 is a subproposition of p2 when
p1 � p2. We say that p1 is equivalent to p2, written p1 ≡ p2,
when both p1 � p2 and p2 � p1 hold.

For example, the proposition “the pump is off and the
valve is closed” may be either true or false depending on the
global state q ∈ QA of the assemblage A = {p, v, ps} of
Figure 3. It can be easily verified that the global state of the
assemblage q1 = (Off, Closed, High) makes proposition P
true, while q2 = (Off, Open, High) makes it false. Other
global states of the assemblage make proposition P true as
well, such as q3 = (Off, Closed, Low).

3.2 State safety

Given a PWS and a state proposition labelling C(·) of
the states in the system section we say that the PWS is safely
specified with respect to C(·) iff the following state invariant
holds for any state S of the system section:

Definition 1 (State safety invariant) When S is the cur-
rent state of the system section, the current state q of the
assemblage satisfies C(S).

In order to have the state invariant above satisfied, the
system has to be specified in a consistent manner. By a
closer analysis, it can be observed that the requirement of
Definition 2 may be broken either by the system section
moving to state S with the assemblage global state mov-
ing, at the same time, to a state q̇ which does not satisfy
the constraint C(S), or by an uncontrollable internal transi-
tion happening in the assemblage when the system section
is in state S, resulting in a global state q̇ of the assemblage
which does not satisfy its constraint C(S).

We say consequently that, in order to overcome the
two causes above invalidating the state safety invariant,
state transitions have to be specified, according to two dif-
ferent notions of correctness, discussed in Sections 3.2.1
and 3.2.2.

3.2.1 Incoming state transition correctness

It can be observed that any state S of the system section
may be reached only through a number of incoming state



transitions, belonging to the set Tinc(S). It can be further
shown that, for any transition t ∈ Tinc(S), a state proposi-
tion post(t) can be effectively computed (as shown in Sec-
tion 3.2.3), such that the assemblage is in state q satisfying
post(t) when the transition has been executed. In order to
have the state invariant of Definition 2 always satisfied for
state S it then suffices to check that

post(t) � C(S) (1)

holds for any state transition t ∈ Tinc(S).

3.2.2 Outgoing state transition correctness

It is possible to identify (Section 3.2.4) a set of pairs (c, t),
named exit zones, where c is a subproposition of C(S) and t
is a transition of the assemblage, such that, when the assem-
blage is in a global state state q satisfying c and transition
t happens, state q is transformed into q̇ which does not sat-
isfy C(S) anymore. An automatic response from the system
section state machine has therefore to be provided in order
to move the control to a state T such that Equation 2 is sat-
isfied for state T . We say that a set I of internally triggered
automatic state transitions covers an exit zone (c, t) iff any
transition ti in I (1) is guarded by a subproposition ci of c,
(2) has t as trigger and (3) the set of guards of the transitions
in I form a partition of c.

In order to have the state invariant of Definition 2 always
satisfied for state S it then suffices to check that any exit
zone of S is covered by an adequate set of automatic transi-
tions. Since such transitions will have to satisfy the correct-
ness requirements of Section 3.2.1 for the arrival state, the
state invariant is guaranteed to be always satisfied.

3.2.3 State transition pre- and postcondition semantics

Let S and T be two generic states in the system section
which are correctly specified according to Definition 2, and
let consider adding a transition t joining state S to state T .
We show how pre(t) and post(t) can be determined for both
regular and automatic transitions.

In the regular case, before t is taken, the current state
q of the system satisfies C(T ). At the same time, in order
for t to be executed, q must satisfy also the transition guard
guard(t). It follows that q must therefore satisfy the inter-
section of the two state propositions, that is

pre(t) = C(T ) ∧ guard(t) (2)

In the automatic case, before t is taken, the current state
q of the system satisfies the state constraint C(T ) after an
internal transition c.t happened: let transf(C(T ), c.t) de-
note such a modified constraint. As in the case above, in
order for the transition to be executed, q must satisfy also

the transition guard guard(t). It follows that q must there-
fore satisfy

pre(t) = transf(C(T ), c.t) ∧ guard(t) (3)

In both cases, after the transition is chosen, a (possibly
empty) list of actions 〈a1, a2, . . . , aN 〉 has to be executed.
If a generic state q0 of the assemblage satisfies P0 = pre(t)
(computed above for the two different cases by Equations 2
and 3) before action a1 is executed, the state of the assem-
blage q1 resulting from the execution of such action will
satisfy another state proposition, say P1, after action a1 has
been executed. Let P1 = transf(P0, a1) denote the trans-
formation in the state proposition induced by the execution
of the action a1. Accordingly, it is possible to denote the
final state proposition post(t) = PN as

P1 = transf(pre(t), a1)
P2 = transf(P1, a2)

...
post(t) = transf(PN−1, aN )

(4)

3.2.4 Exit zone computation

Let C be a state proposition about assemblage A. We are
interested in computing E(C), the set of exit zones of C,
consisting of the couples (p, c.t), where p is a subproposi-
tion of C and t is a non controllable transition which can
be taken by component c when the assemblage satisfies p
which leads to a global state which do not satisfies C any-
more. In [6] we show how the full set of exit zones can be
algorithmically determined.

For example, with reference to Figure 3, since C(On) =
Onp�Openv�Lowps, the only non controllable transition t3
in component ps under C(On) may lead to a global state q̇
which satisfies Onp�Openv�Highps, hence (C(On), ps.t3)
is an exit zone that needs to be covered by an automatic
transition in the system section (see Section 3.4).

3.3 State liveness

Given a PWS and a state proposition labelling C(·), we
say that the PWS satisfies liveness with respect to C(·) iff
the following state invariant holds:

Definition 2 (State liveness invariant) For any state S in
the system section and for any event e, let T (S, e) be the set
of transitions departing from S and having event e as trig-
ger. If T (S, e) is not empty, then exactly one of such transi-
tions will be executed upon the receipt of e by the PWS.

In order to ensure the invariant above we have to check
that the preconditions of the transitions in T (S, e) form a
partition of C(S).



t6

t5
t4

t3
t2Stop On

on

stop

< v.open, p.on >

< v.close, p.stop >t1

HBP

on
[ps=High]

< v.close, p.off >
ps.low

[ps=Low]

ps.high

Figure 4. Extending the system section of the
PWS of Figure 3 by an explicit exception state
HBP and by additional state transitions.

3.4 Final system design

According to the methodology, we find two main flaws
in the design of Figure 3; in first place we observe a live-
ness issue: the whole system may not start on the receipt of
the event on if the value of the pressure sensor ps is High;
this happens since the outgoing transition t2 from state Stop
constrained by C(Stop) = Offp � Closev in the system
section has precondition pre(t2) = C(Stop) � Lowps =
Offp � Closev � Lowps which does not partition C(Stop).
In order to solve the problem, we insert a novel transition t5
(Figure 4), having the same event on as trigger, guarded by
Highps. In such a case, it can be easily verified that pre(t2)
and pre(t5) form now a partition of C(Stop), hence exactly
one of the two transitions will be taken.

In second place, we observe a more serious safety issue:
the state On, constrained by C(On) = Onp�Openv�Lowps

in the system section has exit zone (C(On), ps.t3) which
is not covered by any transition. We insert consequently a
new transition t4 triggered by ps.t3 or, equivalently, by the
assemblage event ps.high.

We have now two dangling transitions, t4 and t5, which
spring, respectively, from the working and from the stopped
state of the system, On and Off. The natural choice is
to introduce a novel HBP state, which denotes the global
state of the system in which high blood pressure requires to
have both valve closed and pump halted, that is C(HBP) =
Offp � Closedv � Highps. It can be now observed that
post(t4) is not compatible with the constraint of HBP:

Onp � Openv � Highps︸ ︷︷ ︸
post(t4)

6� Offp � Closedv � Highps︸ ︷︷ ︸
C(HBP)

In other words, in order to have transition t4 compatible

with the constraint of HBP, we have to turn the pump off
and to close the valve by suitable commands sent to the as-
semblage before entering the state. We thus associate the
action sequence 〈v.close, p.off〉 to transition t4, yielding the
new postcondition post(t4) ≡ C(HBP).

Finally, the insertion of the new state HBP requires to
“cover” the new exit zone (C(HBP), ps.t2), corresponding
to the system returning to a regular blood pressure. We
choose to insert a new transition t6 in order to bring the
system to Stop in such a case: the transition is correct since
post(t6) � C(Stop). We observe that other safe design
choices were feasible, for example by adding the action se-
quence 〈v.open, p.on〉 to transition t6 which might join in-
stead state HBP to state On, in order to automatically restart
the whole system when the pressure returns regular.

4 Conclusions

We have shown the basic guidelines of a method for as-
sessing safety axioms into a state-based distributed system.
Such a method follows logically from the explicit modeling
of the behavior of interacting devices, which yields a sys-
tem state diagram depicting and enforcing a specific global
behavior of the devices making the system. The method
lends itself to be easily implemented both as a verification
tool and as part of an interactive design tool.

References

[1] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231–274, 1987.

[2] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic Model Checking: 1020 States and Beyond.
In Proc. IEEE Symposium on Logic in Computer Science,
Washington, D.C., 1990. IEEE Computer Society Press.

[3] I. Lee and G. Pappas. Report on the high-confidence medical-
device software and systems workshop. Technical Report
NSF CNS 0532968, 2005.

[4] L. Pazzi. Extending statecharts for representing parts and
wholes. In Proceedings of the EuroMicro-97 Conference, Bu-
dapest, Hungary, 1997.

[5] L. Pazzi. Part-whole statecharts for the explicit representation
of compound behaviors. In UML 2000 - The Unified Modeling
Language. Advancing the Standard., volume 1939 of LNCS,
pages 541–555. Springer, 2000.

[6] L. Pazzi. A method for ensuring safety and liveness rules in
a state-based design, http://cris.unimore.it/cris/files/2008-02-
01.pdf. Technical Report CRIS-2008-02-01, 2008. Patent
pending PCT/EP2008/051300.

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design. Pren-
tice Hall, 1991.

[8] J. Staunstrup, H. R. Andersen, H. Hulgaard, J. Lind-Nielsen,
K. G. Larsen, G. Behrmann, K. Kristoffersen, A. Skou,
H. Leerberg, and N. B. Theilgaard. Practical verification of
embedded software. Computer, 33(5):68–75, 2000.


