Part-Whole Hierarchical
Modularization of Fault-Tolerant and
Goal-Based Autonomic Systems

Recent trends in space software
engineering

* Model-based control;

* Goal based (GB) control;

— Specification from high-level objectives:

* Appealing in space missions, allows on-board systems to
operate in absence of human operators;

* Improve the overall robustness of on-board systems;

* Implements varying levels of on-board autonomy, including
Fault Detection, Isolation and Recovery (FDIR) capabilities;
— The idea is to take autonomous decisions on the
activities to be performed depending on both
unplanned events and overall mission goals.

Monolithic architecture

Plant

commands T ¢ observations

Deductive Controller

?

?

Goals

State-based
model

Goals allow to operate a
system at the level of explicit
intent;

A state-based representation
of the various plant devices is
needed in order to
accomplish the high-level
goals;

The “deductive controller”
explores the state space and
chooses the activities to be
performed depending on
both unplanned events and
overall mission goals.

Open issues

Are goals coherent one with each other? Can they
formally be validated against system behavior?

Can low-level sequences be calculated at design time?
Can we plan “unplanned events”?
How can the system architecture be decomposed in

order to build independent and reusable subsystems?

— Although both state-based and goal-based paradigm are
decomposable, it is not clear how to have the two notions
agree;

— Can FDIR strategies be modularized?
— Finally, how to decompose the main closed loop control?

Basic Approach

* We express goals as state constraints:

— Goals can be seen indeed as “system state configurations” which have

to reached by the system through sequences of “low level system
interactions”;

— It becomes therefore possible to calculate such sequences at design

time instead that by “on the fly” computation which are potentially
energy and time consuming;

* We employ a modular state-based paradigm: Part Whole
Statecharts

— allow to specify both a implementation and interface by a state based
formalism;

— allow an effective modular state-based system decomposition: a PWS

system is assembled by composing, recursively, already specified PWS
subsystems.

— Each state module reacts to events coming both from the system to
which it belongs and propagates further events to its subsystems.

Basic modular construct

Component Component
behavior behavior
observation (re)action
2 1
Goal-based

implementation

State interface

k 3 4 _/
State
transition T Commanded
notification behavior

Each module implements a
specific system control
according to a goal-based
implementation;

Each module has four ports:

— the two ports on the upper
side allow the module to
coordinate subsystem
behavior;

— the two ports on the lower
side allow the module to be
coordinated on its turn by
other system of which it is
part.

Modular part-whole composition

(Hardware] (Hardware]

(Hardware]

State interface

Goal-based
implementation

State interface

Goal-based
implementation

State interface

C

State interface

Goal-based
implementation

State interface

Leaf modules are
nothing but
hardware drivers;

Intermediate
modules describe
subsystem control;

Root modules
describe global
control.

Basic control patterns

feedback

trigger . .
99 l * A triggering event comes to
the module from one of its
im%ff*ﬁf;% i subsystems:
— feedback is directed back
State interface to the module subsystems;
notification

compound action .)
e A trlggermg event comes to

the module from one of the
systems which have the
module as subsystem:

State interface — a compound action is
forwarded to the module

T trigger subsystems;

Goal-based
implementation

notification

Example: orbital insertion system

* the orbital insertion of a spacecraft, requires
to thrust a rocket engine after having

retracted a science camera in order to avoid
plume contamination;

* the rocket engine consists of a main engine

and of a backup engine, in order to improve
reliability;

Example: orbital insertion system

(Hardware w (Hardware w

State interface

State interface

Goal-based
implementation

State interface

Goal-based

Orbital implementation
Insertlon State interface
System 7

Different control loops may be
established, at the same time,
among modules at each level

For example commands may be
exchanged among the orbital
insertion system and the engine
system, which in turn propagates
further commands towards the
rocket engines at the top.

Notification of success or failure
travel in the same way downwards,
from the rocket engine to the
engine system, which may send
back upward commands to the
rocket engines and, at the same
time, downward, failure or success
notification to the orbital insertion
system.

Example: orbital insertion system

t1
Q\
t2
out State interface State interface
c: Camera Engine Camera
_____________ System
g
start
Orbital Goal-based
. implementation
Insertion

<c.out,e.off>

System LState interface J

<c.out,e.off>
turnOff

Implementation by PW Statecharts

e System behavior implemented

System components through extended state
. J i machines;
c. Lamera ©: ENginesys — state transitions labelled by:

* triggering events:
— start, abort, turnOff, ignite;
* lists of commands directed
towards subsystems;
— <c.in, e.stdby>

— states constrained by state
propositions expressing system
goals:

* C1: the engine is turned off and
the camera arm is extended;

* C2:the engine is ready to fire
and the camera arm is
retracted;

* (C3:the engine is thrusting and
the camera arm is retracted;

<c.out,e.off>
turnOff

t5

Basic Fault Detection Mechanism

e A faultis the impossibility to achieve a goal by a controller
module, in a given time, due to the unexpected behavior of
some of its components;

* For each action sent, there are two possible failure
outcomes:

— the commanded component either do not move to the desired
state in a “reasonable” given time or

— it fails silently, which again means that it takes an indefinitely
long time to complete.

On the other hand, since both the components and the
controller operate and communicate asynchronously, it
becomes necessary to achieve, at the programming level,
some form of nonblocking synchronization amongst them.

c: Camera

<c.in,e.stdby,t.set>

Walit States

e: EngineSys | t: Timer tout
-C2 A TIn Cc2
[C2]
> >
t2'
[TOut] | ©

Special intermediate wait states
are therefore introduced,

Let C2 be the original goal
proposition of the ending state
of transition t2;

An intermediate derived
proposition C2’ can be
associated to state W, meaning
— goal C2 has not been achieved
(yet) and less that T time units
have been elapsed, where T is
the maximum expected time
required to accomplish both
camera retraction and engine
standby.
By adding a special “Timer”
synchronous state machine, like
the one depicted in the picture,
it becomes possible to translate
timing issues into state machine
behavior, thus having to deal
with a unique paradigm.

Example: self-healing rocket engine

t1 set
w\

ra: Rocket rb: Rocket t: Timer tout
(Stdby,Stdby, Tout) (Stdby,Stdby, Tin) (Firing,Stdby, Tin) Il (Stdby,Firing, Tin)
Std <ra.fire,t.set> [rb=Firing]
> >
By /4 ign 1

@ | [t=TOut]

4

[rb=Firing] | '

<rb.fire,t.set> [t=TOut]
> >
4@ 14

(Stdby,Stdby, TOut) (Stdby,Stdby, Tin) (Stdby,Stdby, TOut)

