Controlli Automatici - Primo Compito	Nome:	
12 Novembre 2003 - Esercizi	Nr. Mat.	
Compito Nr. $a = b =$	Firma:	
	C.L.:	Info. Elet. Telec. Altro.

Negli esercizi che seguono, si sostituisca ad $a \in b$ i valori assegnati e si risponda alle domande.

a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali temporali x(t):

$$x_1(t) = a t^3 e^{-b t},$$
 $x_2(t) = b e^{at} \cos[(a+b)t],$

b) Calcolare la risposta impulsiva $g_i(t)$ delle seguenti funzioni di trasferimento $G_i(s)$:

$$G_1(s) = \frac{a s + b}{(s - a)^2 + b^2},$$
 $G_2(s) = \frac{a}{s^2(1 + a s)},$ $G_3(s) = \frac{a s}{s + b}$

- c) In figura è mostrata la risposta x(t) di un sistema massa, molla e smorzatore descritto dall'equazione differenziale $\ddot{x} + B \dot{x} + K x = F$, quando in ingresso viene posto un gradino di forza Fpari a F = 100 N.
 - c.1) Determinare la posizione dei poli dominanti del sistema:

$$p_{1,2} = \ldots + j \ldots$$

c.2) ed il valore dei parametri $B \in K$ (rispettivamente coefficiente di attrito lineare e rigidità della molla);

$$K = \dots$$
 $B = \dots$

d) Relativamente allo schema a blocchi riportato in figura, calcolare le funzioni di trasferimento $G_1(s) \in G_2(s)$:

e) Sia data la seguente funzione di trasferimento:

$$G(s) = \frac{10b(s^2 + 0.4as + 4)}{s(s - 5b)(1 + \frac{s}{200})^2}$$

- e.1) Tracciare i diagrammi asintotici di Bode delle ampiezze e delle fasi della funzione G(s);
- e.2) Leggere in modo approssimato dai diagrammi asintotici di Bode i valori del modulo e della fase della funzione G(s) in corrispondenza della pulsazione $\omega = 100$:

$$|G(j \ 100)| = \dots \dots = \arg[G(j \ 100)] = \dots \dots$$

- f) Si faccia riferimento ad un sistema G(s) i cui diagrammi di Bode sono mostrati in figura. Nei limiti della precisione consentita dal grafico si risponda alle seguenti domande:
 - f.1) calcolare la risposta "a regime" $y_{\infty}(t)$ del sistema G(s)quando in ingresso è presente il segnale: $x(t) = a \cos(5b t + \pi/3);$
 - f.2) calcolare per quale valore di $\omega_0 = \dots$ il sistema si comporta come un semplice guadagno $K_0 > 0$. Calcolare inoltre il valore di tale guadagno: $K_0 = \dots$
 - f.3) ricavare l'espressione analitica della funzione di trasferimento G(s). Giustificare brevemente la soluzione trovata.

- g) Si faccia riferimento ad un sistema G(s) il cui diagramma di Nichols è mostrato in figura. Nei limiti della precisione consentita dal grafico si risponda alle seguenti domande:
 - g.1) calcolare la risposta "a regime" $y_{\infty}(t)$ del sistema G(s)quando in ingresso è presente il segnale: $x(t) = b + 10 \sin(2a t);$
 - g.2) calcolare per quali valori di ω il sistema si comporta ₋₁₀ come un semplice guadagno K. Calcolare inoltre i ₋₂₀ corrispondenti valori di K.

- h) Si faccia riferimento al diagramma di Bode dei moduli mostrato in figura.
 - h.1) sapendo che il sistema è a fase minime, stimare "indicativamente" la fase del sistema in corrispondenza delle seguenti pulsazioni: $\omega_1 = 0.1 \rightarrow \varphi_1 \simeq \dots$ $\omega_2 = 1 \rightarrow \varphi_2 \simeq \dots$ $\omega_3 = 35 \rightarrow \varphi_3 \simeq \dots$ $\omega_4 = 1000 \rightarrow \varphi_4 \simeq \dots$

Controlli Automatici - Primo Compito	Nome:					
12 Novembre 2003 - Domande		Nr. Mat.				
Compito Nr. $a = b =$	Firma:					
	C.L.:	Info.	\parallel Elet.	\parallel Telec.	Altro.	

Negli esercizi che seguono, si sostituisca ad a e b i valori assegnati e si risponda alle domande. Per ciascuno dei test a soluzione multipla, segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test contengono più affermazioni giuste e si considerano superati quando "tutte" le affermazioni giuste sono contrassegnate.

1. Scrivere, in funzione dei segnali $x(t) \in y(t)$, l'equazione differenziale corrispondente alla seguente funzione di trasferimento:

$$G(s) = \frac{Y(s)}{X(s)} = \frac{s^2 + a}{s^3 + 2s^2 + bs + 3} \qquad -\frac{3}{2}$$

2. Nella scomposizione in fratti semplici, qual è la posizione della coppia di poli complessi coniugati $p_{1,2} = \sigma \pm j\omega$ corrispondente all'andamento temporale $g_1(t) = 3 e^{-at} \cos(bt + 0.2)$:

$$p_{1,2} = \sigma \pm j\omega = \pm j$$

3. Scrivere la funzione di trasferimento G(s) di un ritardo puro di durata "a" in cascata con un guadagno puro di ampiezza "b":

$$G(s) =$$

4. Calcolare il valore iniziale $y_0 = \lim_{t\to 0^+} del segnale y(t)$ corrispondente alla seguente trasformata di Laplace Y(s):

$$Y(s) = \frac{b s^2 + 1}{s(s+a)} \qquad \to \qquad y_0 =$$

5. Calcolare il valore il valore finale $y_{\infty} = \lim_{t \to \infty} del segnale y(t)$ corrispondente alla seguente trasformata di Laplace Y(s):

$$Y(s) = \frac{s-b}{s(s^2+5s+a)} \qquad \rightarrow \qquad y_{\infty} =$$

6. Disegnare l'andamento qualitativo y(t) della risposta al gradino unitario del sistema $G_1(s)$. Calcolare il guadagno statico $K_0 = \dots$ e fornire una stima del tempo di assestamento $T_a = \dots$ s.

7. Scrivere il modulo $M(\omega) = |G(j\omega)|$ e la fase $\varphi(\omega) = \arg G(j\omega)$ della funzione di risposta armonica del seguente sistema G(s):

$$G(s) = \frac{e^{-t_0 s}}{s+a} \qquad \rightarrow \qquad \begin{cases} M(\omega) = \\ \\ \varphi(\omega) = \end{cases}$$

8. Calcolare l'evoluzione libera (cioè per x = 0) del sistema $\dot{y} + a y = x$ partendo dalla condizione iniziale y(0) = b.

$$y(t) = t > 0$$

9. Sia dato il seguente sistema G(s):

$$G(s) = \frac{(s+4.5)(s+476)}{(s+4773)(s+16)(s+99)(s^2+0.3s+250)(s^2+83s+4780)}$$

Stimare qualitativamente il tempo di assestamento T_a e la massima sovraelongazione S%del sistema G(s) alla risposta al gradino:

$$T_a =$$

 $S\% =$

Eventualmente, se lo si ritiene utile, si utilizzi il grafico riportato a fianco.

10. Si considerino le risposte al gradino unitario riportate in figura.

Quali di questo parametri rimangono costanti per tutti i sistemi che hanno generato gli andamenti riportati in figura?

- \bigcirc tempo di assestamento T_a ;
- \bigcirc massima sovraelongazione S%;
- \bigcirc coefficiente di smorzamento δ ;
- \bigcirc picco di risonanza M_R ;
- \bigcirc pulsazione naturale ω_n ;

11. Il diagramma di bode dei moduli del sistema $G(s) = \frac{1-\tau s}{1+\tau s}$ è:

- \bigcirc una retta orizzontale
- \bigcirc una curva ascendente
- \bigcirc una curva discendente
- 12. Il sistema dinamico $G(s) = \frac{2(s+1)}{s+2}$
 - \bigcirc ha un guadagno statico unitario
 - \bigcirc ha guadagno unitario alle elevate frequenze ($\omega \to \infty$)
 - \bigcirc ha una fase positiva per tutte le pulsazioni

13. La massima sovraelongazione in % del sistema $G(s) = \frac{1}{s^2+1}$ in risposta ad un gradino unitario è

 $\bigcirc S = 0 \%$

$$\bigcirc S = 10 \%$$

 $\bigcirc S = 100 \%$