Controlli Automatici A - 2008 Esercitazione nr. 1

Gruppo Nr.	a =
------------	-----

	Cognome	Nome
1)		
2)		

Si sostituisca ad a il valore assegnato nelle seguenti funzioni di trasferimento e si risponda alle domande.					
$G_1(s) = \frac{5000(s+0.2)(s+50)}{(s+a^2)(s^2+2s+4)}$	$G_2(s) = \frac{(s+0.1)(s-200)}{s(s+a)^2}$	$G_3(s) = \frac{10(s + \frac{a}{10})(s^2 - 3s + 36)}{s^2(s + 200)}$			
1) Calcolare la antitrasformata di La	place delle funzioni $G_i(s)$ (usare il con	nando "invtr):			
,					
$g_1(t) =$	$g_2(t) =$	$g_3(t) =$			
2)Disegnare qualitativamente la risp	osta al gradino unitario delle funzi	oni $G_i(s)$ (usare "tresp):			
, 48 4 4	8				
3)Disegnare il diagramma asintoti	co di Bode delle ampiezze delle fur	nzioni $G_i(s)$ (usare "fresp):			
	-				
4)Disegnare il diagramma asintotico di Bode delle fasi delle funzioni $G_i(s)$ (usare "fresp):					
,		1)			

5a) Disegnare qualitativamente il d andamento del diagramma ottenuto	iagramma polare <i>completo</i> delle funziono utilizzando il comando "fresp".	oni $G_i(s)$. Verificare il corretto	
5b) Determinare, sul diagramma di	Nyquist, il margine di fase M_{Fi} e il	margine di ampiezza M_{Ai} della	
funzione $G_i(s)$. Verificare i risultati $M_{F1} =$	ottenuti tramite l'opzione 3 del coman $M_{E2} =$		
	$M_{F2} = M_{A2} =$	$M_{F3} = M_{A3} =$	
$M_{A1} =$			
Nyquist stimare qualitativamente se	st precedentemente ottenuto al punto e esistono intervalli di K per i quali il ite di K). Esercizio da svolgersi senza	sistema retroazionato è stabile	
< K <	< <i>K</i> <	< K <	
*	(utilizzare il comando "routh"), determinato è stabile. Indicare con K_i^* il valo		
< K <	$-K_2^* = < K <$	$< K < = K_3^*$	
determinati al punto 6) in modo che	$G(s) = 0.5 K_2^* G_2(s)$ e $\overline{G}_3(s) = 0.5 K_3^* G_3$ e la nuova funzione $\overline{G}_i(s)$, se retroazione $\overline{G}_i(s)$ del sistema retroazionato e	ata con retroazione unitaria, sia	
$G_{01}(s) =$	$G_{02}(s) =$	$G_{03}(s) =$	
8) Uscire dal programma TFI utilizza	ndo il comando "exit" e in ambiente M	atlab digitare i seguenti comandi:	
<pre>s=tf('s') gs=1000/((s+10)*((s+1)^2+100)) dcgain(gs) figure pzmap(gs) step(gs) bode(gs) nyquist(gs) margin(gs) ltiview(gs)</pre>	% Definizione in Matlab della variabile 's' di Laplace % Definizione in Matlab della funzione di trasferimento gs % Guadagno statico della funzione di trasferimento gs % Apertura di una nuova finestra in Matlab % Mappa dei poli e degli zeri della funzione di trasferimento gs % Risposta al gradino della funzione di trasferimento gs % Diagrammi di Bode della funzione di trasferimento gs % Diagramma di Nyquist della funzione di trasferimento gs % margini di stabilita' della funzione di trasferimento gs % "Linear Time-Invariant Viewer": ambiente integrato per % lo studio delle funzioni di trasferimento gs % Quando il cursore e' sulla figura usare il tasto destro % per cambiare il tipo di funzionalita' desiderata		
sisotool(gs) help control	% Sistemi dinamici Single-Input-Single-Output % Lista del comandi presenti in Matlab inerenti a Controlli		